Angewandte Eine Zeitschrift der Gesellschaft Deutscher Chemiker Chemie

Supporting Information

Concise Total Synthesis of Enigmazole A

Andreas Ahlers, Teresa de Haro, Barbara Gabor, and Alois Fürstner*
anie_201510026_sm_miscellaneous_information.pdf

Table of Contents

General S-2
Oxazole Fragment S-3
Allyltin Fragment S-11
Acid Fragment S-14
Completion of the Total Synthesis S-19
Comparison of the NMR Data S-32
References S-34
Copies of Spectra of New Compounds S-35

General. Unless stated otherwise, all reactions were carried out in flame-dried glassware using anhydrous solvents under Argon. The solvents were purified by distillation over the following drying agents and were transferred under Ar: THF, $\mathrm{Et}_{2} \mathrm{O}(\mathrm{Mg} /$ anthracene $), \mathrm{CH}_{2} \mathrm{Cl}_{2}$, hexane, pentane, toluene $(\mathrm{Na} / \mathrm{K})$, $\mathrm{MeOH}(\mathrm{Mg}$, stored over MS $3 \AA$), EtOH (MS $3 \AA$), ethyl acetate ($\mathrm{P}_{2} \mathrm{O}_{5}$, filtered through dry $\mathrm{Al}_{2} \mathrm{O}_{3}$, stored over $4 \AA \mathrm{MS}$); 1,4-dioxane, DMF, MeCN, NEt_{3} and pyridine were dried by an adsorbtion solvent purification system based on molecular sieves. Thin layer chromatography (TLC): Macherey-Nagel precoated plates (POLYGRAM ${ }^{\circledR}$ SIL/UV254); Flash chromatography: Merck silica gel $60(40-63 \mu \mathrm{~m})$ with predistilled or HPLC grade solvents. NMR: Spectra were recorded on Bruker DPX 300, AV 400, AV 500 or AVIII 600 spectrometer in the solvents indicated; chemical shifts (δ) are given in ppm relative to TMS, coupling constants (J) in Hz. The solvent signals were used as references and the chemical shifts converted to the TMS scale $\left(\mathrm{CDCl}_{3}: \delta_{\mathrm{C}} \equiv 77.2 \mathrm{ppm}\right.$; residual CHCl_{3} in CDCl_{3} : $\delta_{\mathrm{H}} \equiv 7.26 \mathrm{ppm} ; \mathrm{CD}_{3} \mathrm{OD}: \delta_{\mathrm{C}} \equiv 49.0 \mathrm{ppm}$; residual $\left.\mathrm{CHD}_{2} \mathrm{OD}: \delta_{\mathrm{H}} \equiv 3.31 \mathrm{ppm}\right)$. IR: Spectrum One (Perkin-Elmer) spectrometer, wavenumbers (\tilde{v}) in cm^{-1}. MS (EI): Finnigan MAT 8200 (70 eV), ESI-MS: ESQ3000 (Bruker), accurate mass determinations: Bruker APEX III FTMS (7 T magnet) or Mat 95 (Finnigan). Optical rotations ($[\alpha]_{D}^{20}$) were measured with a Perkin-Elmer Model 343 polarimeter. LC-MS analyses were conducted on a Shimadzu LCMS2020 instrument (pumps LC-20AD, autosampler SIL-20AC, column oven CTO-20AC, diode array detector SPD-M20A, controller CBM-20A, ESI detector and software Labsolutions) with an ZORBAX Eclipse Plus C18 $1.8 \mu \mathrm{~m}, 3.0$ or 4.6 mm ID $\times 50 \mathrm{~mm}$ (Agilent). A binary gradient of MeCN or MeOH in water or aq. triethylammonium acetate buffer (10 mmol. pH 8$)$ was used at a flow rate of $0.5(3.0 \mathrm{~mm}$ ID) or $0.8(4.6 \mathrm{~mm} \mathrm{ID}) \mathrm{mL} / \mathrm{min}$. The oven temperature was kept at $35^{\circ} \mathrm{C}$ and the detection wave length at 254 nm . Preparative LC was performed with a Shimadzu LC-20A prominence system (pumps LC-20AP, column oven CTO-20AC, diode array detector SPD-M20A, fraction collector FRC-10A, controller CBM20A and software LC-solution); conditions for each compound are specified below. Unless stated otherwise, all commercially available compounds (Alfa Aesar, Aldrich, Fluka, TCI) were used as received.

Oxazole Fragment

(R,Z)-4-Iodo-3-methylbut-3-en-2-ol (S1). ${ }^{1}$ A suspension of (R)-(+)-3-butyn-2-ol (5.96 mL ,
 $75.6 \mathrm{mmol})$ and copper(I) iodide ($14.4 \mathrm{~g}, 75.6 \mathrm{mmol}$) in toluene (100 mL) was cooled to $-78{ }^{\circ} \mathrm{C}$. A solution of methylmagnesium bromide (1.4 M in THF/toluene 1:3, $378 \mathrm{~mL}, 529 \mathrm{mmol}$) was added over the course of 75 min . Once the addition was complete, the mixture was allowed to warm to ambient temperature and stirring was continued for 3.5 h . The mixture was then cooled to $-40^{\circ} \mathrm{C}$ before a solution of iodine (134 g , 529 mmol) in THF (140 mL) was slowly added via cannula. After stirring 1.5 h at room temperature, the reaction was carefully quenched by the addition of sat. aq. sodium thiosulfate $(400 \mathrm{~mL})$. The aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 200 \mathrm{~mL})$ and the combined extracts were dried over MgSO_{4}, filtered and concentrated by distillation (in portions, $40^{\circ} \mathrm{C}$, ≥ 90 mbar, Vigreux column, collection flask cooled to $-78{ }^{\circ} \mathrm{C}$). The residue (200 mL) was purified by flash chromatography (pentane $/ \mathrm{Et}_{2} \mathrm{O}, 7: 1$ to $6: 1$) and the product containing fractions were concentrated by careful distillation ($40{ }^{\circ} \mathrm{C}, \geq 200 \mathrm{mbar}$) to yield the title compound (93% in $\mathrm{Et}_{2} \mathrm{O}, 12.7 \mathrm{~g}, 74 \%$) as a pale orange liquid. $[\alpha]_{D}^{20}=+12.3$ ($\mathrm{c}=2.65$, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.89-5.88(\mathrm{~m}, 1 \mathrm{H}), 4.77(\mathrm{qd}, J=6.5,2.8 \mathrm{~Hz}, 1 \mathrm{H})$, $1.87(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.79-1.78(\mathrm{~m}, 1 \mathrm{H}) 1.25(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): $\delta=149.4,73.7,72.6,20.4,18.4$; IR (film): $\tilde{v}=3331,2973,2916,16134,1441$, 1369, 1278, 1134, 1102, 1073, 1037, 1021, 975, 902, $770 \mathrm{~cm}^{-1}$; MS (EI) $\mathrm{m} / \mathrm{z}(\%): 127$ (3), 85 (69),45 (57), 43 (100); HRMS (EI): $m / z:$ calcd. for $\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{OI}[M]: 211.9698$, found: 211.9700.
($\boldsymbol{R}, \boldsymbol{Z}$)-1-Iodo-3-methoxy-2-methylbut-1-ene (5). ${ }^{2}$ A solution of the alcohol $\mathbf{S 1}$ (93% in $\mathrm{Et}_{2} \mathrm{O}$,
 $12.7 \mathrm{~g}, 55.7 \mathrm{mmol}$) in THF (80 mL) was added over 10 min to a suspension of sodium hydride ($2.67 \mathrm{~g}, 111 \mathrm{mmol}$) and imidazole ($379 \mathrm{mg}, 5.57 \mathrm{mmol}, 0.10$ equiv) in THF (150 mL) at $0{ }^{\circ} \mathrm{C}$. The mixture was allowed to reach ambient temperature and stirring was continued for 2 h before methyl iodide ($31.6 \mathrm{~g}, 223 \mathrm{mmol}$) was added slowly. After an additional 2 h , the excess reagent was quenched with water (250 mL) and the aqueous layer was extracted with pentane $(2 \times 250 \mathrm{~mL})$. The combined extracts were washed with brine (200 mL), dried over MgSO_{4}, filtered and concentrated by careful distillation ($25{ }^{\circ} \mathrm{C}, \geq 350$ mbar, Vigreux column, collection flask cooled to $-78{ }^{\circ} \mathrm{C}$). The residue (ca. 100 mL) was purified by flash chromatography (pentane $/ \mathrm{Et}_{2} \mathrm{O}, 20: 1$) and productcontaining fractions were concentrated by distillation ($30^{\circ} \mathrm{C}, \geq 300 \mathrm{mbar}$) to yield compound

5 as an yellowish liquid (95% in pentane, $8.44 \mathrm{~g}, 64 \%$). $[\alpha]_{D}^{20}=+5.3\left(\mathrm{c}=2.55, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.03-6.02(\mathrm{~m}, 1 \mathrm{H}), 4.26(\mathrm{q}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.22(\mathrm{~s}, 3 \mathrm{H}), 1.79$ (d, $J=1.5 \mathrm{~Hz}, 3 \mathrm{H}$), 1.19 (d, $J=6.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=147.5,80.9$, $75.8,56.4,18.6,18.1$; IR (film): $\tilde{v}=2978,2928,2820,1613,1441,1369,1339,1279,1205$, 1144, 1114, 1094, 1064, 1030, 968, 865, 773. cm^{-1}; MS (EI) m/z (\%): 195 (3), 127 (2), 99 (100), 31 (14); HRMS (EI): m / z : calcd. for $\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{OI}[M]$: 225.9854, found: 225.9855.

Ethyl (R,Z)-2-(3-methoxy-2-methylbut-1-en-1-yl)oxazole-4-carboxylate (7). ${ }^{2}$ In a pressure tube, palladium(II) acetate ($265 \mathrm{mg}, 1.18 \mathrm{mmol}, 5 \mathrm{~mol} \%$) was added to a
 suspension of caesium carbonate ($15.4 \mathrm{~g}, 47.3 \mathrm{mmol}$), ethyl-4oxazolcarboxylate 6 ($3.3 \mathrm{~g}, 23.6 \mathrm{mmol}$), alkenyl iodide 5 (95% in pentane, $8.44 \mathrm{~g}, 35.5 \mathrm{mmol}$) and 2-(dicyclohexylphosphino)biphenyl ($829 \mathrm{mg}, 2.36 \mathrm{mmol}, 10 \mathrm{~mol} \%$) in 1,4-dioxane (65 mL). The mixture was stirred at $110{ }^{\circ} \mathrm{C}$ for 23 h . After cooling to ambient temperature, the suspension was filtered through Celite which was carefully rinsed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$. The filtrate was concentrated under reduced pressure ($40^{\circ} \mathrm{C}, \geq 50 \mathrm{mbar}$) and the residue was purified by flash chromatography (hexanes/ethyl acetate, $20: 1$ to $4: 1$) to yield compound $7(4.16 \mathrm{~g}, 74 \%)$ as a colorless oil. $[\alpha]_{D}^{20}=+41.7\left(\mathrm{c}=1.76, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.13(\mathrm{~s}, 1 \mathrm{H})$, $6.25(\mathrm{~s}, 1 \mathrm{H}), 5.13(\mathrm{q}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.22(\mathrm{~s}, 3 \mathrm{H}), 1.92(\mathrm{~d}, J=1.5$ $\mathrm{Hz}, 3 \mathrm{H}), 1.37(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.32(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ $161.6,161.2,153.4,142.9,134.4,112.9,75.0,61.4,56.7,19.6,18.1,14.5$; IR (film): $\tilde{v}=$ 3154, 2981, 2932, 2821, 1743, 1720, 1654, 1575, 1562, 1447, 1370, 1332, 1316, 1279, 1217, 1178, 1109, 1025, 971, 947, 839, $771 \mathrm{~cm}^{-1}$; MS (EI) m / z (\%): 224 (100), 194 (7), 180 (3), 59 (9); HRMS (ESI): $m / z:$ calcd. for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{NO}_{4} \mathrm{Na}\left[M+\mathrm{Na}^{+}\right]$: 262.1049 found: 262.1051.
(R,Z)-2-(3-Methoxy-2-methylbut-1-enyl)oxazole-4-carbaldehyde (8). ${ }^{2}$ A solution of
 oxazole $7(4.20 \mathrm{~g}, 17.6 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(150 \mathrm{~mL})$ was cooled to -90 ${ }^{\circ} \mathrm{C}$ and treated dropwise over 15 min with Dibal-H (1 M in toluene, 35.1 $\mathrm{mL}, 35.1 \mathrm{mmol})$. The mixture was stirred at $-90^{\circ} \mathrm{C}$ until TLC showed complete consumption of the starting material (ca. 20 min). The excess reagent was carefully quenched by the addition of methanol (15 mL) and sat. aq. potassium sodium tartrate (200 mL). The mixture was stirred for 18 h at $23^{\circ} \mathrm{C}$ before the layers were separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 150 \mathrm{~mL})$. The combined extracts were washed with brine (200 mL), dried over MgSO_{4}, filtered and concentrated. The
residue was purified by flash chromatography (hexanes/ethyl acetate, $15: 1$ to $10: 1$) to give product $8(2.74 \mathrm{~g}, 80 \%)$ as a yellowish oil. $[\alpha]_{D}^{20}=+46.8\left(\mathrm{c}=2.18, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=9.93(\mathrm{~s}, 1 \mathrm{H}), 8.16(\mathrm{~s}, 1 \mathrm{H}), 6.23-6.22(\mathrm{~m}, 1 \mathrm{H}), 5.24(\mathrm{q}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.23$ ($\mathrm{s}, 3 \mathrm{H}$), $1.94(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.32(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ 184.7, 161.4, 154.7, 142.9, 141.7, 112.1, 74.9, 56.7, 19.3, 18.0; IR (film): $\tilde{v}=3144,3085$, 2979, 2932, 2822, 1698, 1652, 1563, 1447, 1393, 1381, 1326, 1290, 1206, 1149, 1113, 1096, 1069, 833, $759 \mathrm{~cm}^{-1}$; MS (EI) m / z (\%): 195 (15), 180 (100), 59 (6); HRMS (ESI): $m / z: ~ c a l c d$. for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{NO}_{3} \mathrm{Na}\left[\mathrm{M}^{+} \mathrm{Na}^{+}\right]$: 218.0787 found: 218.0789.
(S)-1-(2-((R,Z)-3-Methoxy-2-methylbut-1-en-1-yl)oxazol-4-yl)but-3-en-1-ol (9). Powdered
 molecular sieves $4 \AA\left(5 \mathrm{~g}\right.$, activated for 5 days at $120{ }^{\circ} \mathrm{C}$) and titanium(IV) isopropoxide ($411 \mu \mathrm{~L}, 1.39 \mathrm{mmol}, 10 \mathrm{~mol} \%$) were added to a solution of (S)-(-)-1,1'-bi(2-naphthol) ($398 \mathrm{mg}, 1.39 \mathrm{mmol}, 10$ $\mathrm{mol} \%$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (25 mL). The orange suspension was stirred at reflux temperature for 1 h before it was allowed to cool to ambient temperature. A solution of aldehyde $\mathbf{8}(2.71 \mathrm{~g}, 13.9 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ was added. The mixture was cooled to $-78{ }^{\circ} \mathrm{C}$ before allyltributylstannane ($5.25 \mathrm{~mL}, 16.9 \mathrm{mmol}$) was added dropwise. After 3 days at $-30{ }^{\circ} \mathrm{C}$, TLC showed complete consumption of the starting material. The reaction was quenched with sat. aq. $\mathrm{NaHCO}_{3}(25 \mathrm{~mL})$ and the mixture allowed to reach ambient temperature. The suspension was filtered through a plug of Celite which was carefully rinsed with tert-butyl methyl ether (25 mL). The filtrate was concentrated until good separation of the layers was reached. The aq. phase was extracted with tert-butyl methyl ether $(2 \times 25 \mathrm{~mL})$ and the combined extracts were dried over MgSO_{4}, filtered and concentrated. The residue was purified by flash chromatography (hexanes/ethyl acetate, $15: 1$ to $4: 1$) to give the title compound $(3.21 \mathrm{~g}, 98 \%)$ as a pale yellow oil. The de $>95 \%$ was determined by analysis of the derived Mosher esters). $[\alpha]_{D}^{20}=+22.3\left(\mathrm{c}=0.50, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, CDCl_{3}): $\delta=7.46(\mathrm{~s}, 1 \mathrm{H}), 6.19(\mathrm{~s}, 1 \mathrm{H}), 5.84(\mathrm{ddt}, J=17.2,10.3,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.20-5.14(\mathrm{~m}$, $3 \mathrm{H}), 4.73(\mathrm{dd}, J=7.3,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.22(\mathrm{~s}, 3 \mathrm{H}), 2.69-2.62(\mathrm{~m}, 1 \mathrm{H}), 2.59-2.52(\mathrm{~m}, 1 \mathrm{H}), 2.39$ (br s, 1 H), $1.89(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.30(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $=160.7,151.1,144.0,134.0,133.2,118.8,113.5,75.0,66.7,56.7,41.1,19.4,17.8$; IR (film): $\tilde{v}=3417,2980,2933,1655,1642,1542,1539,1381,1371,1206,1154,1113,1095,1068$, 915, 862. cm^{-1}; MS (EI) $m / z(\%): 237$ (38), 222 (56), 204 (100); HRMS (ESI): $m / z: ~ c a l c d . ~ f o r ~$ $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{NO}_{3} \mathrm{Na}\left[M+\mathrm{Na}^{+}\right]: 260.1257$ found: 260.1257.
tert-Butyl ((S)-1-(2-((R,Z)-3-methoxy-2-methylbut-1-en-1-yl)oxazol-4-yl)but-3-en-1-yl)
 carbonate (10). Di-tert-butyl dicarbonate ($7.30 \mathrm{~g}, 33.5 \mathrm{mmol}$) and 4(dimethylamino)pyridine ($1.02 \mathrm{~g}, 8.37 \mathrm{mmol}$) were added to a solution of the alcohol 9 ($3.79 \mathrm{~g}, 17.7 \mathrm{mmol}$) in $\mathrm{MeCN}(150 \mathrm{~mL})$. After stirring for 20 h , the mixture was concentrated and the residue was dissolved in tert-butyl methyl ether (100 mL) and water (100 $\mathrm{mL})$. The layers were separated and the aqueous phase was extracted with tert-butyl methyl ether $(2 \times 100 \mathrm{~mL})$. The combined extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The crude product was purified by flash chromatography (hexanes/ethyl acetate, $15: 1$ to 10:1) to yield the title compound $(5.18 \mathrm{~g}, 92 \%)$ as a pale yellow oil. $[\alpha]_{D}^{20}=-8.8\left(\mathrm{c}=0.60, \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.51(\mathrm{~d}, J=0.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.19-6.18(\mathrm{~m}, 1 \mathrm{H}), 5.76(\mathrm{ddt}, J=$ $17.2,10.1,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.62(\mathrm{t}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.21(\mathrm{q}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{dq}, J=17.2$, $1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.08-5.05(\mathrm{~m}, 1 \mathrm{H}), 3.22(\mathrm{~s}, 3 \mathrm{H}), 2.78$ (ddt, $J=14.3,6.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.71$ (ddt, J $=14.2,7.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.88(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.47(\mathrm{~s}, 9 \mathrm{H}), 1.31(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=160.6,153.1,151.2,140.1,134.9,133.0,118.5,113.4,82.6$, 74.9, 71.2, 56.9, 37.8, 28.0 (3C), 19.3, 17.8; IR (film): $\tilde{v}=2980,2933,2820,1740,1644$, 1544, 1449, 1369, 1342, 1280, 1254, 1163, 1095, 1036, 973, 919, 845, 793, $762 \mathrm{~cm}^{-1}$; MS (EI) m / z (\%): 337 (15.86), 281 (18.30), 220 (57.00), 204 (100), 117 (2); HRMS (ESI): $m / z:$ calcd. for $\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{NO}_{5} \mathrm{Na}\left[M+\mathrm{Na}^{+}\right]: 360.1781$ found: 360.1783.
(4R,6S)-4-(Iodomethyl)-6-(2-((R,Z)-3-methoxy-2-methylbut-1-en-1-yl)oxazol-4-yl)-1,3-

dioxan-2-one (11). A solution of olefin $10(3.97 \mathrm{~g}, 11.8 \mathrm{mmol})$ in toluene (140 mL) was cooled to $-90^{\circ} \mathrm{C}$ and treated dropwise with a solution of $\mathrm{IBr}\left(1 \mathrm{M}\right.$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 35.3 \mathrm{~mL}, 35.3 \mathrm{mmol}$) over 40 min (it was essential to store the IBr solution at $23^{\circ} \mathrm{C}$). After complete addition, stirring was continued until TLC showed complete consumption of the starting material (ca. 10 min). The excess reagent was quenched with sat. aq. $\mathrm{NaHCO}_{3}(100 \mathrm{~mL})$ and sat. aq. sodium thiosulfate $(100 \mathrm{~mL})$. After reaching ambient temperature, the layers were separated and the aq. phase was extracted with tert-butyl methyl ether $(2 \times 150 \mathrm{~mL})$. The combined extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The crude material was purified by flash chromatography (hexanes/ethyl acetate, 2:1) to yield the title compound ($2.58 \mathrm{~g}, 54 \%$) as a pale yellow oil. When the reaction was performed with only 200 mg of $\mathbf{1 0}$, a yield of 73%
was obtained. $[\alpha]_{D}^{20}=+21.7\left(\mathrm{c}=0.79, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.56(\mathrm{~d}, J=$ $0.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.19(\mathrm{~s}, 1 \mathrm{H}), 5.50(\mathrm{ddd}, J=11.7,3.1,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.15(\mathrm{q}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.64-$ 4.58 (m, 1H), 3.46 (dd, $J=10.5,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.46$ (dd, $J=10.5,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.23$ (s, 3H), 2.78 (dt, $J=14.1,3.19 \mathrm{~Hz}, 1 \mathrm{H}), 2.15(\mathrm{dt}, J=14.3,11.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.92(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 3 \mathrm{H})$, 1.30 (d, $J=6.6 \mathrm{~Hz}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=161.3,152.7,147.9,138.5,134.9$, $112.9,74.9,73.5,69.5,56.7,33.0,19.4,17.9,4.9$; IR (film): $\tilde{v}=3482,3135,2978,2931$, 2820, 1745, 1656, 1602, 1543, 1519, 1446, 1382, 1239, 1184, 1109, 1092, 1038, 971, 854, $760 \mathrm{~cm}^{-1}$; MS (ESI) $m / z(\%): 430\left(M+\mathrm{Na}^{+}, 100\right)$; HRMS (ESI): $m / z:$ calcd. for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{NO}_{5} \mathrm{INa}$ $\left[M+\mathrm{Na}^{+}\right]: 430.0121$ found: 430.0120 .
(S)-1-(2-((R,Z)-3-Methoxy-2-methylbut-1-en-1-yl)oxazol-4-yl)-2-((R)-oxiran-2-yl)ethan-1-
 ol (S2). A solution of iodide $\mathbf{1 1}(2.11 \mathrm{~g}, 5.18 \mathrm{mmol})$ in $\mathrm{MeOH}(25$ mL) was treated at $0{ }^{\circ} \mathrm{C}$ with potassium carbonate $(2.15 \mathrm{~g}, 15.5$ $\mathrm{mmol})$. After stirring for 40 min , the mixture was diluted with tertbutyl methyl ether (25 mL) and excess reagent was quenched with sat. aq. ammonium chloride (50 mL). The aq. phase was extracted with tert-butyl methyl ether $(2 \times 25 \mathrm{~mL})$ and the combined extracts were dried over MgSO_{4}, filtered and concentrated. The residue was purified by flash chromatography (hexanes/ethyl acetate, $1: 1$) to yield the title compound $(1.03 \mathrm{~g}, 79 \%)$ as a colorless oil. $[\alpha]_{D}^{20}=+28.0(\mathrm{c}=$ $\left.0.30, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.51(\mathrm{~s}, 1 \mathrm{H}), 6.19(\mathrm{~s}, 1 \mathrm{H}), 5.18(\mathrm{q}, J=6.6 \mathrm{~Hz}$, $1 \mathrm{H}), 4.94(\mathrm{t}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.22(\mathrm{~s}, 3 \mathrm{H}), 3.17-3.09(\mathrm{~m}, 1 \mathrm{H}) 2.80(\mathrm{dd}, J=4.8,4.1 \mathrm{~Hz}, 1 \mathrm{H})$, $2.72(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.57(\mathrm{dd}, J=5.9,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.27(\mathrm{dt}, J=14.4,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.90$ $(\mathrm{d}, J=1.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.92-1.81(\mathrm{~m}, 1 \mathrm{H}), 1.30(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): $\delta=160.9,151.3,143.9,133.4,113.5,75.0,66.3,65.8,50.3,47.0,39.4,19.4,18.9$; IR (film): $\tilde{v}=3417,2980,2824,2821,1655,1542,1518,1447,1370,1258,1206,1152$, 1206, 1152, 1109, 1094, 1068, 1036, 971, 856, $753 \mathrm{~cm}^{-1}$; MS (EI) m / z (\%): 253 (13), 238 (53), 178 (100); HRMS (ESI): m / z : calcd. for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{NO}_{4} \mathrm{Na}\left[M+\mathrm{Na}^{+}\right]: 276.1206$ found: 276.1208.

4-((S)-1-((tert-Butyldimethylsilyl)oxy)-2-((R)-oxiran-2-yl)ethyl)-2-((R,Z)-3-methoxy-2-methylbut-1-en-1-yl)oxazole (12). TBSCl $(1.25 \mathrm{~g}, 8.29 \mathrm{mmol})$ was added to a solution of alcohol $\mathbf{S} 2(1.40 \mathrm{~g}$, $5.53 \mathrm{mmol})$, imidazole ($564 \mathrm{mg}, \quad 8.29 \mathrm{mmol}$) and 4-
(dimethylamino)-pyridine ($67.5 \mathrm{mg}, 0.553 \mathrm{mmol}, 10 \mathrm{~mol} \%$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.5 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. The mixture was stirred at ambient temperature until TLC showed complete consumption of the starting material (ca. 75 min). The mixture was diluted with tert-butyl methyl ether (20 mL) and excess reagent was quenched with sat. aq. ammonium chloride (30 mL). The aqueous phase was extracted with tert-butyl methyl ether $(2 \times 30 \mathrm{~mL})$. The combined extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by flash chromatography (hexane to hexanes/ethyl acetate, 30:1) to give the title compound (1.99 g , $98 \%)$ as a yellow oil. $[\alpha]_{D}^{20}=+13.2\left(\mathrm{c}=0.44, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.45$ (d, $J=0.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.18(\mathrm{dd}, J=1.2,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.21(\mathrm{q}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.92(\mathrm{td}, J=5.8$, $1.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.23(\mathrm{~s}, 3 \mathrm{H}), 3.04(\mathrm{~m}, 1 \mathrm{H}), 2.74(\mathrm{t}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.50(\mathrm{dd}, J=5.0,2.7 \mathrm{~Hz}$, $1 \mathrm{H}), 2.11(\mathrm{dt}, J=13.9,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.93(\mathrm{dt}, J=13.9,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.89(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 3 \mathrm{H})$, $1.29(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.9(\mathrm{~s}, 9 \mathrm{H}), 0.1(\mathrm{~s}, 3 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=160.3,150.7,145.1,133.7,113.5,74.9,67.0,56.6,49.4,47.0,40.7,25.8$ (3C), 19.2, 18.2, 17.7, -4.6, -4.8; IR (film): $\tilde{v}=2954,2929,2887,2857,2820,1654,1542,1472,1463,1447$, 1408, 1387, 1362, 1253, 1206, 1153, 1093, 1034, 1006, 968, 938, 913, 871, 833, 811, 775, 811, $775 \mathrm{~cm}^{-1}$; MS (EI) m / z (\%): 367 (5), 336 (2), 310 (100); HRMS (ESI): $m / z:$ calcd. for $\mathrm{C}_{19} \mathrm{H}_{33} \mathrm{NO}_{4} \mathrm{SiNa}\left[M+\mathrm{Na}^{+}\right]: 390.2071$ found: 390.2067.
(1S,3S)-1-((tert-Butyldimethylsilyl)oxy)-6-(1,3-dioxolan-2-yl)-1-(2-((R,Z)-3-methoxy-2-

methylbut-1-en-1-yl)oxazol-4-yl)hexan-3-ol
(14).

Preparation of the Grignard reagent $13:{ }^{3}$ A solution of 2-(2-bromoethyl)-1,3-dioxolane ($2.00 \mathrm{~mL}, 17.0 \mathrm{mmol}$) in THF (8.5 mL) was added over 30 min to a suspension of magnesium powder ($1.04 \mathrm{~g}, 42.6 \mathrm{mmol}$) in THF (4.2 mL). The temperature was kept below $30^{\circ} \mathrm{C}$ (water bath). After stirring for 1.5 h , the mixture was filtered through a syringe filter and the flask was rinsed with THF (2 mL) to give a yellowish solution of $\mathbf{1 3}$
(0.80 M in THF, 16.7 mL). The concentration was determined by titration using lithium chloride and iodine. ${ }^{4}$

Epoxide Opening: A suspension of copper(I) iodide ($206 \mathrm{mg}, 1.08 \mathrm{mmol}, 20 \mathrm{~mol} \%$) in THF (30 mL) was cooled to $-78{ }^{\circ} \mathrm{C}$ before an aliquot of the freshly prepared solution of the Grignard reagent $\mathbf{1 3}(0.80 \mathrm{~m}$ in THF, $10.2 \mathrm{~mL}, 8.12 \mathrm{mmol})$ was added dropwise. After stirring for 5 min , a solution of epoxide $\mathbf{1 2}(1.99 \mathrm{~g}, 5.41 \mathrm{mmol})$ in THF $(30 \mathrm{~mL})$ was added over 30 min . Once the addition was complete, the mixture was stirred at $-40^{\circ} \mathrm{C}$ for 50 min . The
reaction was quenched with sat. aq. ammonium chloride (60 mL) and the mixture was allowed to reach ambient temperature. The layers were separated and the aqueous phase was extracted with tert-butyl methyl ether $(2 \times 60 \mathrm{~mL})$. The combined extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by flash chromatography (hexanes/ethyl acetate, $5: 1$ to $2: 1$) to yield the title compound ($2.35 \mathrm{~g}, 92 \%$) as a pale yellow oil. $[\alpha]_{D}^{20}=-2.6\left(\mathrm{c}=0.52, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.42(\mathrm{~d}, J=0.7 \mathrm{~Hz}, 1 \mathrm{H})$, $6.17(\mathrm{dd}, J=1.0,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{q}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.93(\mathrm{t}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.83(\mathrm{t}$, $J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.97-3.78(\mathrm{~m}, 5 \mathrm{H}), 3.49(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.23(\mathrm{~s}, 3 \mathrm{H}), 1.93(\mathrm{ddd}, J=13.9$, $9.1,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.59(\mathrm{ddd}, J=13.9,6.3,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.89(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.68-1.43(\mathrm{~m}$, $6 \mathrm{H}), 1.29(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.9(\mathrm{~s}, 9 \mathrm{H}), 0.1(\mathrm{~s}, 3 \mathrm{H}),-0.01(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): $\delta=160.3,151.3,145.4,133.6,113.3,104.8,75.0,69.5,68.4,65.0(2 \mathrm{C}), 56.7,45.2$, $37.4,34.0,25.9$ (3C), 20.3, 19.4, 18.2, 17.8, -4.5, -4.8; IR (film): $\tilde{v}=3487,2950,3930$, $2859,1655,1543,1462,1253,1096,970,838,778 \mathrm{~cm}^{-1}$; MS (ESI) $\mathrm{m} / \mathrm{z}(\%): 492\left(M+\mathrm{Na}^{+}\right.$, 100); HRMS (ESI): $m / z:$ calcd. for $\mathrm{C}_{24} \mathrm{H}_{43} \mathrm{NO}_{6} \mathrm{SiNa}\left[M+\mathrm{Na}^{+}\right]: 492.2751$ found: 492.2751.

4-((5S,7S)-7-(3-(1,3-Dioxolan-2-yl)propyl)-2,2,3,3,10,10-hexamethyl-9,9-diphenyl-4,8-

dioxa-3,9-disilaundecan-5-yl)-2-((R,Z)-3-methoxy-2-methylbut-1-en-1-yl)oxazole (S3). A solution of alcohol 14 ($2.35 \mathrm{~g}, 5.00 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(45 \mathrm{~mL})$ was cooled to $0{ }^{\circ} \mathrm{C}$ before 2,6-lutidine ($1.75 \mathrm{~mL}, 15.0 \mathrm{mmol}$) and TBDPSOTf $(1.77 \mathrm{~mL}, 5.75 \mathrm{mmol})$ were successively added. After stirring for 20 min at $0{ }^{\circ} \mathrm{C}$, the reaction was quenched with sat. aq. ammonium chloride (50 mL), the layers were separated and the aqueous phase was extracted with tert-butyl methyl ether $(2 \times$ 50 mL). The combined extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by flash chromatography (hexanes/ethyl acetate, $15: 1$ to $6: 1$) to obtain the title compound ($3.11 \mathrm{~g}, 88 \%$) as a colorless oil. $[\alpha]_{D}^{20}=-9.0\left(\mathrm{c}=0.25, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.62(\mathrm{td}, J=7.8,1.3 \mathrm{~Hz}, 4 \mathrm{H}), 7.40-7.29(\mathrm{~m}, 6 \mathrm{H}), 7.06(\mathrm{~s}, 1 \mathrm{H}), 6.14(\mathrm{~s}$, $1 \mathrm{H}), 5.21(\mathrm{q}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.80(\mathrm{t}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.67(\mathrm{t}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.90-3.77(\mathrm{~m}$, $5 \mathrm{H}), 3.17(\mathrm{~s}, 3 \mathrm{H}), 2.01(\mathrm{td}, J=6.8,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.88(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.48-1.38(\mathrm{~m}, 6 \mathrm{H})$, $1.27(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.02(\mathrm{~s}, 9 \mathrm{H}), 0.81(\mathrm{~s}, 9 \mathrm{H}), 0.01(\mathrm{~s}, 3 \mathrm{H}),-0.09(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=159.6,150.3,144.9,136.1$ (2C), 136.0 (2C), 134.8, 134.6, 133.6, 129.6, 129.57, 129.55, 127.55 (2C), 127.54 (2C), 113.7, 104.7, 74.9, 70.6, 65.8, 64.9, 56.5, 44.0,
36.6, 34.0, 27.3 (3C), 26.0 (3C), 19.6, 19.3, 19.1, 18.3, 17.7, -4.3, -4.6; IR (film): $\tilde{v}=2953$, 2931, 2887, 2852, 1428, 1257, 1107, 1066, 972, 939, 837, 820, 776, $702 \mathrm{~cm}^{-1}$; MS (ESI) m / z (\%): $730\left(M+\mathrm{Na}^{+}, 100\right)$; HRMS (ESI): $m / z:$ calcd. for $\mathrm{C}_{40} \mathrm{H}_{61} \mathrm{NO}_{6} \mathrm{SiNa}\left[M+\mathrm{Na}^{+}\right]: 730.3929$ found: 730.3938 .
(5S,7S)-7-((tert-Butyldimethylsilyl)oxy)-5-((tert-butyldiphenylsilyl)oxy)-7-(2-((R,Z)-3-
 methoxy-2-methylbut-1-en-1-yl)oxazol-4-yl)heptanal (15). 2,4,6-trimethylpyridine ($1.10 \mathrm{~mL}, 8.31 \mathrm{mmol}$) and TMSOTf $(1.00 \mathrm{~mL}, 5.54 \mathrm{mmol})$ were added to a solution of dioxolane S3 ($2.21 \mathrm{~g}, 2.77 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. After stirring for 1 h at this temperature, water $(50 \mathrm{~mL})$ was added and stirring continued for 2 h at ambient temperature. The layers were separated and the aqueous phase was extracted with tert-butyl methyl ether $(3 \times 50 \mathrm{~mL})$. The combined extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The crude material was purified by flash chromatography (hexanes/ethyl acetate, $20: 1$ to $15: 1$) to give the title compound ($1.78 \mathrm{~g}, 97 \%$) as a pale yellow oil. $[\alpha]_{D}^{20}=-10.4\left(\mathrm{c}=0.50, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=9.57(\mathrm{t}, J=1.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.64-7.60(\mathrm{~m}, 4 \mathrm{H}), 7.42-7.30(\mathrm{~m}, 6 \mathrm{H}), 7.11(\mathrm{~s}, 1 \mathrm{H}), 6.15(\mathrm{qd}, J=1.4,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.20$ $(\mathrm{q}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.79(\mathrm{t}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.95-3.86(\mathrm{~m}, 1 \mathrm{H}), 3.18(\mathrm{~s}, 3 \mathrm{H}), 2.15-1.99(\mathrm{~m}$, $4 \mathrm{H}), 1.89(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.61-1.42(\mathrm{~m}, 4 \mathrm{H}), 1.27(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.04(\mathrm{~s}, 9 \mathrm{H}), 0.81$ ($\mathrm{s}, 9 \mathrm{H}$), 0.01 ($\mathrm{s}, 3 \mathrm{H}$), -0.08 ($\mathrm{s}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=202.5,160.0,150.4$, 145.0, 136.1 (2C), 136.0 (2C), 134.6, 134.4, 133.6, 129.7 (2C), 127.62 (2C), 127. 61 (2C), 113.6, 74.9, 70.1, 65.8, 56.6, 44.1, 43.8, 36.0, 27.2 (3C), 25.9 (3C), 19.6, 19.3, 18.2, 17.7, 17.2, -4.3, -4.7; IR (film): $\tilde{v}=2953,2930,2891,2857,1727,1655,1589,1544,1472,1462$, 1428, 1388, 1361, 1252, 1205, 1078, 1068, 1005, 971, 938, 836, $777 \mathrm{~cm}^{-1}$; MS (ESI) $\mathrm{m} / \mathrm{z}(\%)$: $686\left(M+\mathrm{Na}^{+}, 100\right)$; HRMS (ESI): $m / z:$ calcd. for $\mathrm{C}_{38} \mathrm{H}_{57} \mathrm{NO}_{5} \mathrm{Si}_{2} \mathrm{Na}\left[M+\mathrm{Na}^{+}\right]: 686.3667$ found: 686.3664.

Allyltin Fragment

2-Butynal (18). Tetrabutylammonium chloride ($3.97 \mathrm{~g}, 14.3 \mathrm{mmol}, 0.10$ equiv) and TEMPO
 ($2.23,14.3 \mathrm{mmol}, 0.10$ equiv) were added to a solution of 2-butyn-1-ol (10.0 g , 143 mmol) in a mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mathrm{~mL})$ and aq. carbonate buffer (100 mL $0.5 \mathrm{~m} \mathrm{NaHCO}_{3}$ and $100 \mathrm{~mL} 0.05 \mathrm{~m} \mathrm{~K}_{2} \mathrm{CO}_{3}$). N-Chlorosuccinimide (30.5 g , 228 mmol) was added in several portions, ${ }^{5}$ causing a slight exotherm and an evolution of gas, which was discharged by passing the gas stream through a wash bottle containing aq. sodium hydroxide solution (1 M). After stirring for 17 h , the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 75$ $\mathrm{mL})$. The combined extracts were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The filtrate was purified by distillation $\left(25^{\circ} \mathrm{C}, \leq 150\right.$ mbar, Vigreux column, the collection flask was cooled to $-78{ }^{\circ} \mathrm{C}$) to obtain the title compound (60% in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 10.9 \mathrm{~g}, 67 \%$) as a colorless solution. The compound is very sensitive and was kept under argon at $-78{ }^{\circ} \mathrm{C}$ (decomposition commences with appearance of a pink coloration). The analytical data were in full agreement with those reported in literature. ${ }^{61} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=9.15(\mathrm{q}, J=$ $1.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.07 (d, $J=0.9 \mathrm{~Hz}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=177.3$, 95.1, 81.1, 4.46.

Tributyl(2-(chloromethyl)allyl)stannane (17). ${ }^{7}$ A solution of diisopropylamine (4.00 mL , 28.5 mmol) in THF (60 mL) was cooled to $0{ }^{\circ} \mathrm{C}$ before it was treated dropwise with $n-B u L i(1.6 \mathrm{M}$ in hexanes, $16.2 \mathrm{~mL}, 25.9 \mathrm{mmol}$). After stirring for 5 min , tributyltin hydride ($6.28 \mathrm{~mL}, 23.3 \mathrm{mmol}$) was added and stirring continued for 15 min at $0^{\circ} \mathrm{C}$. The resulting solution was then added over the course of 1 h to a solution of 3-chloro-2-chloromethyl-1-propene ($3.00 \mathrm{~mL}, 25.9 \mathrm{mmol}$) in pentane $(100 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$. The mixture was stirred for 1 h at $-78^{\circ} \mathrm{C}$ before the reaction was quenched with water (100 mL). The mixture was diluted with hexanes/ethyl acetate ($10: 1,240 \mathrm{~mL}$), the organic phase was washed with brine, dried over MgSO_{4}, filtered and concentrated and the residue was purified by flash chromatography (hexanes) to yield the title compound ($4.78 \mathrm{~g}, 49 \%$) as a colorless liquid. The spectral data were in full agreement with those reported in literature. ${ }^{81} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=4.84\left(\mathrm{dt}, J=1.3,0.7 \mathrm{~Hz}, J_{\mathrm{H}-\mathrm{Sn}}=17.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.71(\mathrm{dt}, J=1.3$, $\left.0.7 \mathrm{~Hz}, J_{\mathrm{H}-\mathrm{Sn}}=17.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.96\left(\mathrm{~d}, J=0.9 \mathrm{~Hz}, J_{\mathrm{H}-\mathrm{Sn}}=5.8 \mathrm{~Hz}, 2 \mathrm{H}\right) 1.89(\mathrm{~d}, J=0.9 \mathrm{~Hz}$, $\left.J_{\mathrm{H}-\mathrm{Sn}}=57.9 \mathrm{~Hz}, 2 \mathrm{H}\right), 1.60-1.36(\mathrm{~m}, 6 \mathrm{H}), 1.36-1.22(\mathrm{~m}, 6 \mathrm{H}), 0.95-0.79(\mathrm{~m}, 15 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=145.8\left(J_{\mathrm{H}-\mathrm{Sn}}=39.0 \mathrm{~Hz}\right), 110.0\left(J_{\mathrm{H}-\mathrm{Sn}}=36.4 \mathrm{~Hz}\right), 50.4\left(J_{\mathrm{H}-\mathrm{Sn}}=8.6 \mathrm{~Hz}\right)$, $29.2\left(J_{\mathrm{H}-\mathrm{Sn}}=20.1 \mathrm{~Hz}\right), 27.5\left(J_{\mathrm{H}-\mathrm{Sn}}{ }^{117}=54.0 \mathrm{~Hz}, J_{\mathrm{H}-\mathrm{Sn}}{ }^{119}=56.0 \mathrm{~Hz}\right), 16.0\left(J_{\mathrm{H}-\mathrm{S}}{ }^{117}=221.0 \mathrm{~Hz}\right.$,
$\left.J_{\mathrm{H}-\mathrm{Sn}}{ }^{119}=231.3 \mathrm{~Hz}\right), 13.9,9.8\left(J_{\mathrm{H}-\mathrm{Sn}}{ }^{117}=306.5 \mathrm{~Hz}, J_{\mathrm{H}-\mathrm{Sn}}{ }^{119}=320.8 \mathrm{~Hz}\right) ;{ }^{119} \mathrm{Sn} \mathrm{NMR}$ $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=-12.9$.
(S)-2-(Chloromethyl)hept-1-en-5-yn-4-ol (19). Powdered molecular sieve $4 \AA$ (5 g , activated for 5 days at $120^{\circ} \mathrm{C}$) and titanium(IV) isopropoxide ($334 \mu \mathrm{~L}$,
 $1.13 \mathrm{mmol}, 0.10$ equiv) were added to a solution of $(S)-(-)-1,1^{\prime}-\mathrm{bi}(2-$ naphthol) ($323 \mathrm{mg}, 1.13 \mathrm{mmol}, 0.10 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (25 mL). The orange suspension was stirred at reflux temperature for 1 h . After reaching ambient temperature, a solution of aldehyde $\mathbf{1 8}\left(75 \%\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}, 1.02 \mathrm{~g}, 11.3 \mathrm{mmol}\right)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added. The mixture was cooled to $-78{ }^{\circ} \mathrm{C}$ before stannane $\mathbf{1 7}(4.48 \mathrm{~g}$, 13.5 mmol) was added dropwise. After stirring for 3 d at $-30^{\circ} \mathrm{C}$, TLC showed complete consumption of the starting material. The reaction was quenched with sat. aq. potassium sodium tartrate (50 mL) and stirring was continued for 1 h at room temperature. The suspension was filtered through a plug of Celite, which was carefully rinsed with tert-butyl methyl ether (25 mL). The volume of the filtrate was reduced, the layers were separated and the aqueous phase was extracted with tert-butyl methyl ether $(2 \times 25 \mathrm{~mL})$. The combined extracts were dried over MgSO_{4}, filtered and concentrated. The residue was purified by flash chromatography (hexanes/ethyl acetate, $10: 1$ to $4: 1$) to give the title compound ($1.50 \mathrm{~g}, 84 \%$) as a colorless liquid. $[\alpha]_{D}^{20}=-28.7\left(\mathrm{c}=1.05, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.29$ $(\mathrm{s}, 1 \mathrm{H}), 5.13(\mathrm{~s}, 1 \mathrm{H}), 4.54-4.50(\mathrm{~m}, 1 \mathrm{H}), 4.13(\mathrm{~s}, 2 \mathrm{H}), 2.58(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.84(\mathrm{~d}, J=1.8$ $\mathrm{Hz}, 3 \mathrm{H}$), 1.75 (br s, 1 H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=141.2,118.3,81.9,79.8,61.4$, 48.5, 41.8, 3.7; IR (film): $\tilde{v}=3367,2919,2930,1646,1437,1258,1136,1113,1006,913$, 851, $749 \mathrm{~cm}^{-1}$; MS (EI) $\mathrm{m} / \mathrm{z}(\%): 123$ (2), 90 (3), 69 (100); HRMS (CI): m/z: calcd. for $\mathrm{C}_{8} \mathrm{H}_{15} \mathrm{NO}\left[M+\mathrm{NH}_{4}{ }^{+}\right]: 176.0842$, found: 176.0840.

The absolute configuration was determined by Mosher ester analysis, the $e e$ was determined after the next step by HPLC on a chiral column.

The other enantiomer, (R)-19, was obtained analogously using $(R)-(-)-1,1$ '-bi(2-naphthol) as chiral ligand; $[\alpha]_{D}^{20}=+25.8\left(\mathrm{c}=1.08, \mathrm{CHCl}_{3}\right)$.
(S)-2-(Chloromethyl)hept-1-en-5-yn-4-yl acetate (S4). 4-(Dimethylamino)pyridine (116
 $\mathrm{mg}, 0.946 \mathrm{mmol}, 10 \mathrm{~mol} \%)$, triethylamine ($2.64 \mathrm{~mL}, 18.9 \mathrm{mmol}$) and acetic anhydride ($1.34 \mathrm{~mL}, 14.2 \mathrm{mmol}$) were added to a solution of alcohol 19 ($1.50 \mathrm{~g}, 9.46 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(60 \mathrm{~mL})$. After stirring for 1 h , the mixture was carefully evaporated ($40^{\circ} \mathrm{C}, \geq 600 \mathrm{mbar}$) and the residue was purified by
flash chromatography (pentane/ $\mathrm{Et}_{2} \mathrm{O}$ 10:1) to furnish the title compound ($1.77 \mathrm{~g}, 93 \%$) as a colorless liquid. The enantiomeric purity (e.e. $\geq 95 \%$) was determined by HPLC analysis on a chiral column ($150 \times 4.6 \mathrm{~mm}$ Chiralpak IC-3, $3 \mu \mathrm{~m}$, n-heptane/2-propanol 99:1 (v/v), 1.0 $\mathrm{mL} / \mathrm{min}, 293 \mathrm{~K}) .[\alpha]_{D}^{20}=-75.3\left(\mathrm{c}=0.95, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=5.51-5.48$ (ddq, $J=8.46 .4,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.25(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{~d}, J=$ $11.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.70-2.57(\mathrm{~m}, 2 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}), 1.83(\mathrm{~d}, J=2.2 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=170.1,140.3,118.6,82.7,76.3,62.9,48.2,38.8,21.2$, 3.7; IR (film): $\tilde{v}=2930,2923,1739,1647,1437,1371,1230,1160,1020,989,914,752$ cm^{-1}; MS (ESI) $m / z(\%): 223\left(M+\mathrm{Na}^{+}, 100\right)$; HRMS (ESI): $m / z:$ calcd. for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{O}_{2} \mathrm{CINa}$ $\left[M_{+} \mathrm{Na}^{+}\right]: 223.0496$, found: 223.0494.
(S)-2-(Iodomethyl)hept-1-en-5-yn-4-yl acetate (S5). Sodium iodide ($2.19 \mathrm{~g}, 14.6 \mathrm{mmol}$)
 was added to a solution of chloride $\mathbf{S 4}(2.18 \mathrm{~g}, 10.8 \mathrm{mmol})$ in acetone (15 mL) and the resulting suspension was stirred at reflux temperature for 20 h. After cooling to ambient temperature, the excess reagent was quenched with sat. aq. sodium thiosulfate (25 mL) and the layers were separated. The aqueous phase was extracted with ethyl acetate ($3 \times 25 \mathrm{~mL}$), and the combined extracts were dried over $\mathrm{Mg}_{2} \mathrm{SO}_{4}$, filtered and concentrated ($40{ }^{\circ} \mathrm{C}, \geq 150 \mathrm{mbar}$). The crude material was purified by flash chromatography (pentane/Et ${ }_{2} \mathrm{O}, 20: 1$ to $10: 1$) to yield the title compound ($2.78 \mathrm{~g}, 88 \%$) as a pale yellow liquid. $[\alpha]_{D}^{20}=-38.9\left(\mathrm{c}=1.10, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ 5.50-5.49 (m, 1H), $5.35(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.01(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{dd}, J=9.6,0.4 \mathrm{~Hz}$, $1 \mathrm{H}), 3.97$ (d, $J=9.6 \mathrm{~Hz}, 1 \mathrm{H}$), 2.71 (ddd, $J=14.4,6.1,0.8 \mathrm{~Hz}, 1 \mathrm{H}$), 2.63 (ddd, $J=14.4,7.1$, $0.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}), 1.83(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=170.1$, 141.8, 117.7, 82.7, 76.3, 62.9, 39.8, 21.2, 10.4, 3.8; IR (film): $\tilde{v}=2956,2920,1739,1636$, 1431, 1371, 1230, 1157, 1020, 986, $914 \mathrm{~cm}^{-1}$; MS (EI) m/z (\%): 232 (72), 123 (47), 105 (100); HRMS (ESI): m / z : calcd. for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{O}_{2} \mathrm{INa}\left[M+\mathrm{Na}^{+}\right]: 314.9852$, found: 314.9852.
(S)-2-((Tributylstannyl)methyl)hept-1-en-5-yn-4-yl acetate (20). Hexabutylditin (5.53 mL ,
 $10.9 \mathrm{mmol})$ and tris-(dibenzylideneacetone)-dipalladium(0) $(110 \mathrm{mg}$, $0.12 \mathrm{mmol}, 1.7 \mathrm{~mol} \%)$ were added to a suspension of iodide $\mathbf{S 5}$ (2.13 $\mathrm{g}, 7.29 \mathrm{mmol})$ in THF (10 mL). Argon was bubbled through the green-black suspension for 30 min , before the mixture was stirred for 3 h at $55^{\circ} \mathrm{C}$. Because TLC showed unreacted starting material, the same amount of tris-(dibenzylideneacetone)-
dipalladium(0) (1.7 mol\%) was added. Stirring at reflux temperature was continued for an additional 1.5 h before the reaction was quenched with sat. aq. $\mathrm{NaHCO}_{3}(25 \mathrm{~mL})$. The mixture was filtered through a plug of Celite which was rinsed with tert-butyl methyl ether (2×25 $\mathrm{mL})$. The layers were separated and the aqueous phase was extracted with tert-butyl methyl ether ($3 \times 25 \mathrm{~mL}$). The combined extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The residue was purified by repeated flash chromatography (hexanes $+2 \%$ triethylamine) to yield the title compound ($2.42 \mathrm{~g}, 73 \%$) as a colorless liquid. $[\alpha]_{D}^{20}=-28.1\left(\mathrm{c}=0.98, \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=5.49(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.64-4.61(\mathrm{~m}, 1 \mathrm{H}), 4.55-4.53(\mathrm{~m}$, $1 \mathrm{H}), 2.35(\mathrm{dd}, J=14.1,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.31(\mathrm{dd}, J=14.1,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}), 1.84(\mathrm{~d}, J=$ $1.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.80(\mathrm{~s}, 2 \mathrm{H}), 1.56-1.39(\mathrm{~m}, 6 \mathrm{H}), 1.30(\mathrm{sext}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H}), 0.89(\mathrm{t}, J=7.7 \mathrm{~Hz}$, $9 \mathrm{H}), 0.87(\mathrm{t}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=170.5,144.6,108.4,82.2$, $77.1,63.3,44.0,29.3\left(J_{\mathrm{H}-\mathrm{Sn}}=10.1 \mathrm{~Hz}, 3 \mathrm{C}\right), 27.5\left(J_{\mathrm{H}-\mathrm{Sn}}{ }^{117}=26.9 \mathrm{~Hz}, J_{\mathrm{H}-\mathrm{Sn}}{ }^{119}=28.1 \mathrm{~Hz}, 3 \mathrm{C}\right)$, $21.3,19.1,13.9(3 \mathrm{C}), 9.6\left(J_{\mathrm{H}-\mathrm{Sn}}{ }^{117}=151.6 \mathrm{~Hz}, J_{\mathrm{H}-\mathrm{Sn}}{ }^{119}=158.7 \mathrm{~Hz}, 3 \mathrm{C}\right), 3.9$; IR (film): $\tilde{v}=$ 2956, 2923, 2853, 2872, 2742, 1629, 1464, 1371, 1230, 1018, 961, $866 \mathrm{~cm}^{-1}$; MS (EI) m / z (\%): 456 (2), 399 (13), 179 (100), 57 (45), 43 (29); HRMS (ESI): m/z: calcd. for $\mathrm{C}_{22} \mathrm{H}_{40} \mathrm{O}_{2} \mathrm{SnNa}\left[M+\mathrm{Na}^{+}\right]: 479.1956$, found: 479.1954 .

The enantiomeric building block (R) - $\mathbf{2 0}$ was prepared by following the same route.

Acid Fragment

(R)-tert-Butyl(3-iodo-2-methylpropoxy)dimethylsilane (25). ${ }^{9}$ Sodium iodide (20.0 g, 133

mmol) was added to a solution of the (R)-3-bromo-2-methylpropan-1-ol 24 $(5.00 \mathrm{~g}, 32.6 \mathrm{mmol})$ in acetone $(60 \mathrm{~mL})$. The mixture was stirred at reflux temperature for 18 h . Water (20 mL) was added and the acetone was removed under reduced pressure and the resulting mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 30 \mathrm{~mL})$. The combined extracts were washed with aq. sat. ammonium thiosulfate ($2 \times 30 \mathrm{~mL}$) and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The resulting crude product was directly used in the next step.

Imidazole ($2.40 \mathrm{~g}, 35.8 \mathrm{mmol}$) and $\mathrm{TBSCl}(5.40 \mathrm{~g}, 35.8 \mathrm{mmol})$ were added at $0^{\circ} \mathrm{C}$ to a solution of crude (R)-3-iodo-2-methylpropan-1-ol described above ($6.30 \mathrm{~g}, 32.6 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (100 mL). The mixture was stirred for 3 h at $0^{\circ} \mathrm{C}$, before it was filtered and washed with pentane (50 mL). The combined filtrates were evaporated, the residue was suspended in pentane and the resulting mixture filtered again through Celite, rinsing with pentane. The
combined filtrate was evaporated and the residue purified by flash chromatography (hexane) to give the title compound $(8.54 \mathrm{~g}, 85 \%)$ as a colorless oil. $[\alpha]_{D}^{20}=-10.5\left(\mathrm{c}=4.14, \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=3.52(\mathrm{dd}, J=10.1,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.39(\mathrm{dd}, J=10.1,6.7 \mathrm{~Hz}$, $1 \mathrm{H}), 3.30(\mathrm{dd}, J=9.6,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.24(\mathrm{dd}, J=9.6,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.67-1.59(\mathrm{~m}, 1 \mathrm{H}), 0.95(\mathrm{~d}$, $J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.060(\mathrm{~s}, 3 \mathrm{H}), 0.059(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ $66.9,37.6,26.1,18.5,17.5,13.9,-5.1$ (2C); IR (film): $\tilde{v}=2955,2929,2894,2857,1470$, 1475, 1419, 1386, 1361, 1329, 1251, 1197, 1181, 1136, 1098, 1065, 1035, 1006, 937, 835, $773 \mathrm{~cm}^{-1}$; MS (EI) $m / z(\%): 257$ (100); HRMS (CI): m/z: calcd. for $\mathrm{C}_{10} \mathrm{H}_{24} \mathrm{OISi}\left[M^{+}+\mathrm{H}\right]$: 315.0641 found: 315.0642 .
(2S,4S)-5-((tert-Butyldimethylsilyl)oxy)-N-((1R,2R)-1-hydroxy-1-phenylpropan-2-yl)- N -

2,4-trimethylpentanamide (27). ${ }^{10} n-\operatorname{BuLi}(1.6 \mathrm{M}$ in hexanes, $48.8 \mathrm{~mL}, 78.1 \mathrm{mmol}$) was added dropwise at $-78{ }^{\circ} \mathrm{C}$ to a stirred suspension of lithium chloride (flame-dried, 12.8 g , 308 mmol) and diisopropylamine ($11.8 \mathrm{~mL}, 84.0 \mathrm{mmol}$) in THF (48 mL). The mixture was warmed to $0^{\circ} \mathrm{C}$ for 5 min before it was cooled again to $-78{ }^{\circ} \mathrm{C}$. A solution of $(R, R)-(-)-$ pseudoephedrine propionamide $26(8.0 \mathrm{~g}, 36.9 \mathrm{mmol})$ in THF (102 mL) was added dropwise and the resulting mixture was stirred for 1 h at $-78^{\circ} \mathrm{C}, 30 \mathrm{~min}$ at $0^{\circ} \mathrm{C}$ and 5 min at ambient temperature. A solution of $\mathbf{2 5}(7.2 \mathrm{~g}, 22.8 \mathrm{mmol})$ in THF (10 mL) was added dropwise at $0{ }^{\circ} \mathrm{C}$ and stirring continued for 22 h at room temperature. The reaction was quenched with aq. sat. ammonium chloride (100 mL) and the aqueous phase was extracted with ethyl acetate (2 x 100 mL). The combined extracts were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ filtered and concentrated. The remaining residue was purified by flash chromatography (hexanes/ethyl acetate, 3:1) to give the title compound as a colorless solid ($9.1 \mathrm{~g}, 98 \%$) (mixture of rotamers, 3:1, NMR $) .[\alpha]_{D}^{20}=-53.0\left(\mathrm{c}=1.5, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ (major rotamer): $\delta=$ 7.35-7.29 (m, 5H), $3.60(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.39(\mathrm{dd}, J=9.7,5.2 \mathrm{~Hz}, 1 \mathrm{H})$, $3.31(\mathrm{dd}, J=9.7,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.85(\mathrm{~s}, 3 \mathrm{H}), 2.71(\mathrm{q}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.74(\mathrm{oct}, J=6.5 \mathrm{~Hz}$, $1 \mathrm{H}), 1.41-1.37(\mathrm{~m}, 2 \mathrm{H}), 1.12(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.06(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.84$ (d, $J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.020(\mathrm{~s}, 3 \mathrm{H}), 0.018(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ (major rotamer): $\delta=179.5,142.8,128.4$ (2C), 127.7, 126.5 (2C), 76.7, 68.5 (2C), 37.6, 34.6, 33.7, 26.1 (3C), 18.6, 17.4, 17.1, 14.6, -5.2 (2C) (one carbon is missing due to signal overlap); IR (film): $\tilde{v}=3374,2955,2930,2857,1620,1471,1461,1408,1251,1087,835,774,701$ cm^{-1}; MS (EI) $m / z(\%): 392$ (3), 350 (56), 300 (16), 243 (100); HRMS (ESI): $m / z:$ calcd. for $\mathrm{C}_{23} \mathrm{H}_{41} \mathrm{NO}_{3} \mathrm{SiNa}\left[M+\mathrm{Na}^{+}\right]: 430.2747$ found: 430.2751.
(2S,4S)-5-((tert-Butyldimethylsilyl)oxy)-2,4-dimethylpentan-1-ol (S6). n-BuLi (1.6 M in
 hexanes, $55.8 \mathrm{~mL}, 89.2 \mathrm{mmol}$) was added at $-78^{\circ} \mathrm{C}$ over 15 min to a stirred solution of diisopropylamine ($13.3 \mathrm{~mL}, 95.5 \mathrm{mmol}$) in THF $(92 \mathrm{~mL})$. The mixture was stirred at this temperature for 10 min and for another 10 min at 0 ${ }^{\circ} \mathrm{C}$. Borane-ammonia complex ($90 \%, 3.10 \mathrm{~g}, 100 \mathrm{mmol}$) was then added and stirring continued for 15 min at $0^{\circ} \mathrm{C}$ and for additional 15 min at ambient temperature. The mixture was cooled to $0^{\circ} \mathrm{C}$ before a solution of amide $27(9.00 \mathrm{~g}, 22.3 \mathrm{mmol})$ in THF (160 mL) was added over 15 min . Stirring was continued for 2 h at ambient temperature before the excess reagent was quenched at $0^{\circ} \mathrm{C}$ with aq. sat. ammonium chloride (150 mL). The aquous layer was extracted with tert-butyl methyl ether ($3 \times 100 \mathrm{~mL}$) and the combined extracts were washed with brine (30 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated. The residue was purified by flash chromatography (hexanes/ethyl acetate, 10:1) to obtain the title compound as a colorless syrup $(4.90 \mathrm{~g}, 89 \%) .[\alpha]_{D}^{20}=-24.7\left(\mathrm{c}=1.59, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta=3.5-3.42(\mathrm{~m}, 2 \mathrm{H}), 3.40(\mathrm{dd}, J=6.3,1.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.78-1.67(\mathrm{~m}, 2 \mathrm{H}), 1.47(\mathrm{t}, J=$ $5.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.21(\mathrm{ddd}, J=13.6,8.8,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.12(\mathrm{ddd}, J=13.6,8.8,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 0.89$ $(\mathrm{s}, 9 \mathrm{H}), 0.89(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.85(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.04(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): $\delta=69.3,69.2,37.0,33.3,33.1,26.2(3 \mathrm{C}), 18.5,16.8,16.7,-5.1$ (2C); IR (film): $\tilde{v}=$ 3375, 2954, 2929, 2857, 1620, 1471, 1454, 1405, 1095, 1050, 836, 774, $701 \mathrm{~cm}^{-1}$; MS (EI) m / z (\%): 215 (1), 189 (1), 55 (100); HRMS (Cl): $m / z:$ calcd. for $\mathrm{C}_{13} \mathrm{H}_{31} \mathrm{NO}_{2} \mathrm{Si}\left[M+\mathrm{H}^{+}\right]$: 247.2093 found: 247.2093.
((2S,4S)-5-((tert-Butyldimethylsilyl)oxy)-2,4-dimethylpentanal (28). A suspension of N -
 methylmorpholine- N-oxide monohydrate ($1.41 \mathrm{~g}, 10.4 \mathrm{mmol}$) and powdered molecular sieves ($4 \AA, 4 \mathrm{~g}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(66 \mathrm{~mL})$ was stirred for 10 min before a solution of alcohol $\mathbf{S 6}(2.00 \mathrm{~g}, 8.1 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(32 \mathrm{~mL})$ and tetra- N propylammonium perruthenate ($140 \mathrm{mg}, 0.39 \mathrm{mmol}, 5 \mathrm{~mol} \%$) were successively added. The resulting mixture was stirred for 30 min before it was filtered through a pad of Celite, which was carefully rinsed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$. The combined filtrates were evaporated and the residue was purified by a flash chromatography (hexanes/ethyl acetate, 5:1) to yield the title compound ($1.72 \mathrm{~g}, 88 \%$), which was immediately used in the next reaction. The recorded spectra data were in full agreement with those reported in literature. ${ }^{11}{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=9.59(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.43(\mathrm{dd}, J=9.8,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.39(\mathrm{dd}, J=9.8,6.0 \mathrm{~Hz}$, $1 \mathrm{H}), 2.45-2.36(\mathrm{~m}, 1 \mathrm{H}), 1.71-1.63(\mathrm{~m}, 1 \mathrm{H}), 1.47(\mathrm{ddd}, J=13.7,8.3,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.39$ (ddd, J
$=13.7,8.3,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.04(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 0.85(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.01$ $(\mathrm{s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=205.3,68.2,44.2,34.0,33.3,26.0(3 \mathrm{C}), 18.3,16.6$, 13.5, -5.3 (2C).
tert-Butyl(((2S,4S)-6,6-dibromo-2,4-dimethylhex-5-en-1-yl)oxy)dimethylsilane (29). Zinc
 powder ($835 \mathrm{mg}, 12.8 \mathrm{mmol}$) and triphenylphosphine ($3.43 \mathrm{~g}, 13.1$ $\mathrm{mmol})$ were added to a solution of tetrabromomethane $(4.34 \mathrm{~g}$, $13.1 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(70 \mathrm{~mL})$. After stirring for 18 h , a solution of aldehyde $28(1.60 \mathrm{~g}, 6.54$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was slowly added and stirring was continued for 5 h . The mixture was poured into a beaker containing hexanes and the resulting precipitate was filtered off. Evaporation of the filtrate and purification of the residue by flash chroamtography (hexanes/ethyl acetate, 5:1) gave the title compound as a colorless syrup ($1.93 \mathrm{~g}, 74 \%$). $[\alpha]_{D}^{20}$ $=+4.2\left(\mathrm{c}=1.00, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=6.19(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{dd}$, $J=9.8,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.40(\mathrm{dd}, J=9.8,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.56-2.48(\mathrm{~m}, 1 \mathrm{H}), 1.69-1.53(\mathrm{~m}, 1 \mathrm{H})$, $1.42(\mathrm{dt}, J=13.5,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.12(\mathrm{dt}, J=14.7,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 0.98(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.90$ (s, 9 H), $0.89(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.04(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=144.9,87.2$, $67.8,39.6,36.2,33.6,26.2(3 C), 19.4,18.5,17.4,-5.1(2 C) ;$ IR (film): $\tilde{v}=2956,2929$, 2827, 1471, 1461, 1251, 1095, 1080, 1006, 836, 774, $667 \mathrm{~cm}^{-1}$; MS (EI) m / z (\%): 343 (45), 107 (100); HRMS (CI): m/z: calcd. for $\mathrm{C}_{14} \mathrm{H}_{29} \mathrm{OBrSi}\left[M+\mathrm{H}^{+}\right]: 399.0354$ found: 399.0350.
tert-Butyl(($2 \boldsymbol{S}, 4 \boldsymbol{4})$-2,4-dimethylhept-5-yn-1-yl)oxy)dimethylsilane (S7). $n-\mathrm{BuLi}(1.6 \mathrm{M}$ in hexanes, $6.93 \mathrm{~mL}, 11.1 \mathrm{mmol}$) was added at $-78^{\circ} \mathrm{C}$ to a solution of dibromo-olefin 29 ($1.93 \mathrm{~g}, 4.82 \mathrm{mmol}$) in THF (18 mL). The mixture was stirred at this temperature for 1 h and for 1 h at $23{ }^{\circ} \mathrm{C}$. Iodomethane ($0.81 \mathrm{~mL}, 13.0 \mathrm{mmo}$) was introduced and stirring continued for 2.5 h . The reaction was quenched with aq. sat. ammonium chloride (20 mL) and the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 20 \mathrm{~mL})$. The combined extracts were washed with brine $(10 \mathrm{~mL})$ and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated under vacuum. The residue was purified by flash chromatography (hexane to hexanes/ethyl acetate, 10:1) to obtain the title compound as a colorless oil ($1.19 \mathrm{~g}, 97 \%$, d.r. $\geq 95: 5$). $[\alpha]_{D}^{20}=+24.7\left(\mathrm{c}=1.05, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta=3.48(\mathrm{dd}, J=9.7,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.39(\mathrm{dd}, J=9.7,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.48-2.39(\mathrm{~m}, 1 \mathrm{H})$, 1.48-1.76 (m, 1H), $1.78(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.41$ (ddd, $J=13,4,7.1,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.23$ (ddd, J $=14,7,8.7,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.10(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.03$ (s, 6 H) $;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=84.4,75.5,67.7,41.2,33.8,26.1$ (3C), 23.9, 21.8,
18.5, 17.6, 3.7, -5.2, -5.1; IR (film): $\tilde{v}=2956,2929,2857,1471,1388,1361,1251,1092$, 1019, 1006, 939, 835, 773, $666 \mathrm{~cm}^{-1}$; MS (EI) m / z (\%): 197 (13), 75 (100); HRMS (CI): m/z: calcd. for $\mathrm{C}_{15} \mathrm{H}_{31} \mathrm{OSi}\left[M+\mathrm{H}^{+}\right]$: 255.2144 found: 255.2144.
(2S,4S)-2,4-Dimethylhept-5-yn-1-ol (S8). Tetrabutylammonium fluorode (1 M in THF, 8.17 $\mathrm{mL}, 8.17 \mathrm{mmol}$) was added to a solution of alkyne $\mathbf{S} 7(1.04 \mathrm{~g}, 4.09$ mmol) in THF (6.0 mL). The mixture was stirred for 18 h before the reaction was quenched with aq. sat. ammonium chloride (5 mL) and extracted with tert-butyl methyl ether ($2 \times 10 \mathrm{~mL}$). The combined extracts were washed with brine (10 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The remaining crude material was purified by flash chromatography (hexanes/ethyl acetate, 5:1) to yield $\mathbf{S 8}$ as a colorless liquid ($550 \mathrm{mg}, 3.92 \mathrm{mmol}, 96 \%$, d.r. $\geq 95: 5$). $[\alpha]_{D}^{20}=+24.4$ ($\mathrm{c}=1.04, \mathrm{CHCl}_{3}$); ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=3.53(\mathrm{dd}, J=10.5,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.42(\mathrm{dd}, J=10.5,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.49-2.42$ $(\mathrm{m}, 1 \mathrm{H}), 1.84(\mathrm{oct}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.75(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.72(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.39(\mathrm{ddd}, J=$ $13,4,7.2,6.1,1 \mathrm{H}), 1.30(\mathrm{ddd}, J=14,9,8.6,6.2,1 \mathrm{H}), 1.10(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\mathrm{~d}, J=7.2$ $\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=84.1,75.9,67.7,41.1,33.7,23.6,21.7,17.4,3.6 ;$ IR (film): $\tilde{v}=3323,2960,2921,2873,1453,1375,1043,999,977,943,757,667 \mathrm{~cm}^{-1} ; \mathrm{MS}$ (EI) $m / z(\%): 67$ (100), 31 (14); HRMS (CI): m/z: calcd. for $\mathrm{C}_{9} \mathrm{H}_{17} \mathrm{O}\left[M+\mathrm{H}^{+}\right]: 141.1279$, found: 141.1277.
(2S,4S)-2,4-Dimethylhept-5-ynoic acid (30). Tetra- n-propylammonium perruthenate (96.5
 $\mathrm{mg}, 275 \mu \mathrm{~mol}, 10 \mathrm{~mol} \%)$ was added to a solution of N -methylmorpholine- N -oxide monohydrate ($3.22 \mathrm{~g}, 27.5 \mathrm{mmol}$) and alcohol S8 ($385 \mathrm{mg}, 2.75 \mathrm{mmol}$) in MeCN (5.6 mL). After stirring for 45 min , the mixture was filtered through a pad of Celite, which was carefully rinsed with ethyl acetate (10 mL). The combined filtrates were evaporated and the crude product was purified by flash chromatography (hexanes/ethyl acetate, $8: 1$) to give the title compound as a colorless liquid ($391 \mathrm{mg}, 92 \%$, d.r. $\geq 95: 5$). $[\alpha]_{D}^{20}=+108.2\left(\mathrm{c}=0.55, \mathrm{CHCl}_{3}\right.$); ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=2.82-2.73(\mathrm{~m}, 1 \mathrm{H}), 2.52-2.43(\mathrm{~m}, 1 \mathrm{H}), 1.78(\mathrm{ddd}, J=14,8,9.8,4.8 \mathrm{~Hz}, 1 \mathrm{H})$, 1.77 (d, $J=2.33 \mathrm{~Hz}, 3 \mathrm{H}$), 1.13 (ddd, $J=14,8,10.4,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.23(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$, 1.14 (d, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=182.9,82.9,76.7,41.2,37.9,24.6$, 21.9, 18.2, 3.67; IR (film): $\tilde{v}=3100,2972,2921,1706,1456,1377,1248,945 \mathrm{~cm}^{-1} ;$ MS
 [$\left.M^{+}\right]$: 154.0993, found: 154.0993.

Completion of the Total Synthesis

(4S, $8 R, 12 S, 14 S)$-14-((tert-Butyldimethylsilyl)oxy)-12-((tert-butyldiphenylsilyl)oxy)-8-
 hydroxy-14-(2-((R,Z)-3-methoxy-2-methylbut-1-en-1-yl) oxazol-4-yl)-6-methylenetetradec-2-yn-4-yl acetate (22). Boron tribromide (1 M in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 3.39 \mathrm{~mL}, 3.39 \mathrm{mmol}$) was added at $0{ }^{\circ} \mathrm{C}$ to a solution of (S, S)-1,2-diphenyl-1,2ethylenediamine bis(toluenesulfonamide) (1.76 g, 3.39 $\mathrm{mmol})^{12}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$. The mixture was stirred for 10 \min at $0{ }^{\circ} \mathrm{C}$ and for 1 h at ambient temperature before all volatile materials were removed in high vacuum.

Allyl stannane 20 ($1.80 \mathrm{~g}, 3.95 \mathrm{mmol}$) was added dropwise at $0{ }^{\circ} \mathrm{C}$ to a solution of the residue in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$. After stirring for 17 h at ambient temperature, the mixture was cooled to $-78^{\circ} \mathrm{C}$ and a solution of aldehyde $\mathbf{1 5}(1.50 \mathrm{~g}, 2.26 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added dropwise over 5 min . The mixture was stirred for 2 h before the reaction was quenched with aq. phosphate buffer (pH 7 , 50 mL). Water (50 mL) was introduced and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 $\times 100 \mathrm{~mL}$). The combined extracts were washed with brine (150 mL), dried over MgSO_{4}, filtered and concentrated. The residue was suspended in $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$ and the colorless solid was filtered off to recover the chiral diamine ligand. The filtrate was evaporated and the residue was purified by flash chromatography (hexanes/ethyl acetate, $10: 1$ to $3: 1$) to give the title compound $(1.79 \mathrm{~g}, 95 \%$, d.r. $>10: 1)$ as a colorless oil. $[\alpha]_{D}^{20}=-20.9\left(c=1.00, \mathrm{CHCl}_{3}\right)$. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.62(\mathrm{~m}, 2 \mathrm{H}), 7.59(\mathrm{~m}, 2 \mathrm{H}), 7.37(\mathrm{~m}, 1 \mathrm{H}), 7.36(\mathrm{~m}, 1 \mathrm{H}), 7.31$ $(\mathrm{m}, 2 \mathrm{H}), 7.29(\mathrm{~m}, 2 \mathrm{H}), 7.08(\mathrm{~d}, J=0.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.14(\mathrm{qd}, J=1.4,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.45(\mathrm{ddq}, J=$ $7.8,6.0,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.19(\mathrm{qd}, J=6.5,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.95(\mathrm{dt}, J=1.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.90(\mathrm{~d}$, $J=1.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.81(\mathrm{td}, J=6.7,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{tdd}, J=6.2,5.8,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.52(\mathrm{dddt}$, $J=9.4,7.6,4.4,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.15(\mathrm{~s}, 3 \mathrm{H}), 2.45(\mathrm{ddd}, J=14.4,7.8,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.40$ (ddd, $J=14.4,6.0,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.14(\mathrm{ddd}, J=14.3,3.3,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.03(\mathrm{~s}, 3 \mathrm{H}), 2.01(\mathrm{t}$, $J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.95(\mathrm{ddd}, J=14.3,9.4,0.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.86(\mathrm{~d} J=1.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.82(\mathrm{~d}$, $J=2.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.63(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.47(\mathrm{~m}, 1 \mathrm{H}), 1.38(\mathrm{~m}, 1 \mathrm{H}), 1.32(\mathrm{~m}, 1 \mathrm{H}), 1.26(\mathrm{~d}, J$ $=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.24(\mathrm{~m}, 1 \mathrm{H}), 1.20(\mathrm{~m}, 1 \mathrm{H}), 1.15(\mathrm{~m}, 1 \mathrm{H}), 1.01(\mathrm{~s}, 9 \mathrm{H}), 0.80(\mathrm{~s}, 9 \mathrm{H}), 0.00(\mathrm{~s}$,
$3 \mathrm{H}),-0.09(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=170.0,159.8,150.1,144.7,141.3$, 135.90 (2C), 135.87 (2C), 134.6, 134.3, 133.5, 129.5, 129.4, 127.41 (2C), 127.39 (2C), 116.1, $113.5,82.2,76.5,74.7,70.4,68.8,65.6,62.8,56.4,44.3,44.0,41.6,37.2,36.7,27.1$ (3C), 25.8 (3C), 21.0, 20.7, 19.4, 19.2, 18.1, 17.5, 17.5, 3.6, -4.5, -4.8; IR (film): $\tilde{v}=3479,2929$, 2857, 1740, 1428, 1371, 1233, 1109, 837, 777, 703, $507 \mathrm{~cm}^{-1}$; MS (ESI) $m / z(\%): 852$ $\left(M+\mathrm{Na}^{+}, 100\right)$; HRMS (ESI): $m / z:$ calcd. for $\mathrm{C}_{48} \mathrm{H}_{71} \mathrm{NO}_{7} \mathrm{Si}_{2} \mathrm{Na}\left[M+\mathrm{Na}^{+}\right]: 852.4661$, found: 852.4661.
(4S,8R,12S,14S)-14-((tert-Butyldimethylsilyl)oxy)-12-((tert-butyldiphenylsilyl)oxy)-14-(2-((R,Z)-3-methoxy-2-methylbut-1-en-1-yl)oxazol-4-yl)-6-
 methylene-8-(((2,2,2-trichloroethoxy)carbonyl)oxy) tetra-dec-2-yn-4-yl acetate (S9). 2,2,2-Trichlorethoxycarbonyl chloride ($0.89 \mathrm{~mL}, 6.45 \mathrm{mmol}$) was added at $0^{\circ} \mathrm{C}$ to a solution of alcohol $22(1.79 \mathrm{~g}, 2.15 \mathrm{mmol})$, 4-(dimethylamino)pyridine ($26.3 \mathrm{mg}, 215 \mu \mathrm{~mol}, 0.10$ equiv) and pyridine ($1.04 \mathrm{~mL}, 12.9$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$. After stirring for 20 min at ambient temperature, the reaction was quenched with water $(20 \mathrm{~mL})$ and the aqueous phase was extracted with ethyl acetate ($3 \times 25 \mathrm{~mL}$). The combined extracts were dried over MgSO_{4}, filtered and concentrated, and the residue was purified by flash chromatography (hexanes/ethyl acetate, 10:1) to give the title compound (2.15 g , quant.) as a colorless oil. $[\alpha]_{D}^{20}=-21.0\left(\mathrm{c}=1.00, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(600 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta=7.61(\mathrm{~m}, 2 \mathrm{H}), 7.59(\mathrm{~m}, 2 \mathrm{H}), 7.38(\mathrm{~m}, 1 \mathrm{H}), 7.37(\mathrm{~m}, 1 \mathrm{H}), 7.32(\mathrm{~m}, 2 \mathrm{H}), 7.30(\mathrm{~m}$, $2 \mathrm{H}), 7.08(\mathrm{~d}, J=0.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.14(\mathrm{qd}, J=1.4,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.41(\mathrm{tq}, J=6.9,2.2 \mathrm{~Hz}, 1 \mathrm{H})$, $5.18(\mathrm{qd}, J=6.5,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.89(\mathrm{dt}, J=1.3 \mathrm{~Hz}+$ not resolved, 1 H$), 4.88(\mathrm{dt}, J=1.3 \mathrm{~Hz}+$ not resolved, 1 H), $4.78(\mathrm{t}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.75(\mathrm{~m}, 1 \mathrm{H}), 4.74(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.64(\mathrm{~d}, J$ $=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{tt}, J=6.2,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.16(\mathrm{~s}, 3 \mathrm{H}), 2.44(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.26$ (ddd, $J=14.6,8.2,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.22(\mathrm{ddd}, J=14.6,5.0,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.02(\mathrm{~s}, 3 \mathrm{H}), 2.00(\mathrm{dt}, J$ $=13.7,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.94(\mathrm{dt}, J=13.7,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.87(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.80(\mathrm{~d}, J=2.2$ $\mathrm{Hz}, 3 \mathrm{H}), 1.46(\mathrm{~m}, 1 \mathrm{H}), 1.39(\mathrm{~m}, 1 \mathrm{H}), 1.36(\mathrm{~m}, 1 \mathrm{H}), 1.29(\mathrm{~m}, 2 \mathrm{H}), 1.25(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H})$, $1.24(\mathrm{~m}, 1 \mathrm{H}), 1.01(\mathrm{~s}, 9 \mathrm{H}), 0.79(\mathrm{~s}, 9 \mathrm{H}), 0.00(\mathrm{~s}, 3 \mathrm{H}),-0.10(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 MHz , CDCl_{3}): $\delta=169.9,159.8,153.7,150.2,144.8,139.4,135.90(2 \mathrm{C}), 135.84$ (2C), 134.5, 134.2, $133.5,129.5$ (2C), 127.44 (2C), 127.43 (2C), 117.1, 113.5, 94.6, 82.1, 77.9, 76.53, 76.50, $74.7,70.2,65.6,62.7,56.4,44.0,41.4,40.9,36.4,34.1,27.1$ (3C), 25.8 (3C), 21.0, 20.3, 19.4,
19.2, 18.1, 17.5, 3.6, -4.5, -4.9; IR (film): $\tilde{v}=2954,2930,2857,1755,1378,1250,1110$, 836, 821, 704, $507 \mathrm{~cm}^{-1}$; MS (ESI) $m / z(\%): 1028\left(M+\mathrm{Na}^{+}, 100\right)$; HRMS (ESI): $m / z: ~ c a l c d$. for $\mathrm{C}_{51} \mathrm{H}_{72} \mathrm{NO}_{9} \mathrm{Cl}_{3} \mathrm{Si}_{2} \mathrm{Na}\left[M+\mathrm{Na}^{+}\right]:$1026.3703, found: 1026.3703.
(4S,8R,12S,14S)-12-((tert-Butyldiphenylsilyl)oxy)-14-hydroxy-14-(2-((R,Z)-3-methoxy-2-
 methylbut-1-en-1-yl)oxazol-4-yl)-6-methylene-8-(($(2,2,2-$ trichloroethoxy)carbonyl)oxy)tetradec-2-yn-4-yl acetate (23). 10-Camphorsulfonic acid ($102 \mathrm{mg}, 0.438 \mathrm{mmol}, 10$ $\mathrm{mol} \%$) was added to a solution of compound $\mathbf{S 9}(2.20 \mathrm{~g}, 2.19$ mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}(24 \mathrm{~mL} / 8 \mathrm{~mL})$. After stirring for 8 h , TLC control indicated that the acetate started to get cleaved. At this point the mixture was neutralized with aq. sat. $\mathrm{NaHCO}_{3}(40 \mathrm{~mL})$. The aqueous phase was extracted with tertbutyl methyl ether ($3 \times 25 \mathrm{~mL}$) and the combined extracts were dried over MgSO_{4}, filtered and concentrated. The residue was purified by flash chromatography (hexanes/ethyl acetate, 10:1 to $2: 1$) to give unreacted starting material ($823 \mathrm{mg}, 37 \%$) and the desired product $23(1.19 \mathrm{~g}, 61 \%, 98 \%$ brsm). $[\alpha]_{D}^{20}=-2.6\left(\mathrm{c}=1.15, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.67(\mathrm{~m}, 2 \mathrm{H}), 7.67$ $(\mathrm{m}, 2 \mathrm{H}), 7.42(\mathrm{~m}, 1 \mathrm{H}), 7.42(\mathrm{~m}, 1 \mathrm{H}), 7.36(\mathrm{~m}, 4 \mathrm{H}), 7.26(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.15(\mathrm{qd}, J=1.4$, $1.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.40(\mathrm{tq}, J=6.9,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{qd}, J=6.5,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.88(\mathrm{dt}, J=1.3,1.1$ $\mathrm{Hz}, 1 \mathrm{H}), 4.86(\mathrm{dt}, J=1.2 \mathrm{~Hz}+$ not resolved, 1 H$), 4.82(\mathrm{dtd}, J=8.9,3.8,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.72(\mathrm{~d}$, $J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.71(\mathrm{~m}, 1 \mathrm{H}), 4.65(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{tt}, J=7.2,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.18$ $(\mathrm{s}, 3 \mathrm{H}), 3.06(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.43(\mathrm{dt}, J=6.9,1.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.25(\mathrm{ddd}, J=14.5,8.2,0.6$ $\mathrm{Hz}, 1 \mathrm{H}), 2.19$ (ddd, $J=14.5,4.8,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.02(\mathrm{~s}, 3 \mathrm{H}), 1.99$ (ddd, $J=14.2,4.7,3.9 \mathrm{~Hz}$, $1 \mathrm{H}), 1.90(\mathrm{ddd}, J=14.3,8.8,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.86(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.80(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 3 \mathrm{H})$, $1.45(\mathrm{~m}, 1 \mathrm{H}), 1.33(\mathrm{~m}, \mathrm{H}), 1.31(\mathrm{~m}, 1 \mathrm{H}) 1.27(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.20(\mathrm{~m}, 3 \mathrm{H}), 1.04(\mathrm{~s}, 9 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=169.9,160.4,153.7,150.5,144.3,139.3,135.88$ (2C), 135.87 (2C), 134.1, 133.5, 133.0, 129.9, 129.8, 127.7 (2C), 127.6 (2C), 117.1, 113.5, 94.6, $82.2,77.7,76.53,76.46,74.7,72.8,66.2,62.7,56.4,42.6,41.4,40.9,36.8,33.9,27.0$ (3C), 21.0, 20.5, 19.29, 19.26, 17.6, 3.6; IR (film): $\tilde{v}=3422,2932,2858,1754,1652,1428,1378$, 1250, 1109, 1067, 1021, 821, 735, 704, 612, $508 \mathrm{~cm}^{-1}$; MS (ESI) m / z (\%): 914 ($M+\mathrm{Na}^{+}, 100$); HRMS (ESI): $m / z:$ calcd. for $\mathrm{C}_{45} \mathrm{H}_{58} \mathrm{NO}_{9} \mathrm{Cl}_{3} \mathrm{SiNa}\left[M+\mathrm{Na}^{+}\right]$: 912.2838, found: 912.2838.
(1S,3S,7R,11S)-11-Acetoxy-3-((tert-butyldiphenylsilyl)oxy)-1-(2-((R,Z)-3-methoxy-2-methylbut-1-en-1-yl)oxazol-4-yl)-9-methylene-7-(($(2,2,2-$
 trichloroethoxy)carbonyl)oxy)tetradec-12-yn-1-yl (2S,4S)-2,4-dimethylhept-5-ynoate (31). 2,4,6-Trichlorobenzoyl chloride $(413 \mu \mathrm{~L}, 2.64 \mathrm{mmol})^{13}$ and triethylamine $(368 \mu \mathrm{~L}$, 2.64 mmol) were added at $0{ }^{\circ} \mathrm{C}$ to a solution of acid $\mathbf{3 0}$ (299 $\mathrm{mg}, 1.94 \mathrm{mmol})$ in toluene (25 mL). The mixture was stirred at ambient temperature for 1 h . After cooling to $0^{\circ} \mathrm{C}$, a solution of alcohol $23(1.57 \mathrm{~g}, 1.76 \mathrm{mmol})$ in toluene (20 mL) and 4-(dimethylamino)pyridine ($215 \mathrm{mg}, 1.76 \mathrm{mmol}$) were successively added. Stirring was continued for 1 h before the mixture was diluted with ethyl acetate (30 mL) and the reaction was quenched with hydrochloric acid ($1 \mathrm{M}, 80 \mathrm{~mL}$). The aqueous phase was extracted with ethyl acetate $(2 \times 80 \mathrm{~mL})$ and the combined extracts were dried over MgSO_{4}, filtered and concentrated. The residue was purified by flash chromatography (hexanes/ethyl acetate, 10:1 to $4: 1$) to yield the title compound as a colorless syrup (1.81 g , quant.). $[\alpha]_{D}^{20}=-7.4$ ($\mathrm{c}=1.00$, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.64-7.57(\mathrm{~m}, 4 \mathrm{H}), 7.44-7.29(\mathrm{~m}, 6 \mathrm{H}), 7.19$ (br s, $1 \mathrm{H}), 6.17-6.14(\mathrm{~m}, 1 \mathrm{H}), 5.94-5.85(\mathrm{~m}, 1 \mathrm{H}), 5.44(\mathrm{ddq}, \mathrm{J}=6.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{qd}, \mathrm{J}=6.6$, $0.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.91$ (br s, 2H), 4.83-4.74 (m, 2H), 4.68 (d, $J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{dt}, J=11.7$, $5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.15(\mathrm{~s}, 3 \mathrm{H}), 2.68-2.56(\mathrm{~m}, 1 \mathrm{H}), 2.47(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.36-2.08(\mathrm{~m}, 5 \mathrm{H})$, $2.05(\mathrm{~s}, 3 \mathrm{H}), 1.88(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.83(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.74(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.67$ (ddd, $J=14.8,9.7,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.54-1.30(\mathrm{~m}, 7 \mathrm{H}), 1.28(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.06(\mathrm{~s}, 3 \mathrm{H})$, $1.05(\mathrm{~s}, 3 \mathrm{H}), 1.04(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=175.9,170.1,160.2,153.9$, $150.8,140.1,139.4,136.03$ (2C), 136.00 (2C), 135.2, 134.2, 134.0, 129.8 (2C), 127.6 (4C), $117.4,113.4,94.7,83.0,82.3,77.9,76.64,76.57,76.4,74.8,69.8,65.7,62.8,56.6,41.4,41.2$, 41.1, 39.6, 38.0, 36.4, 34.2, 27.1 (3C), 24.4, 21.8, 21.2, 20.5, 19.5, 19.3, 18.2, 17.8, 3.8, 3.7; IR (film): $\tilde{v}=2962,2932,2858,1753,1737,1448,1428,1377,1249,1162,1110,1064$, 1021, $970,821,733,704,611,507,489 \mathrm{~cm}^{-1}$; MS (ESI) $m / z(\%): 1050\left(M+\mathrm{Na}^{+}, 100\right)$; HRMS (ESI): $m / z:$ calcd. for $\mathrm{C}_{54} \mathrm{H}_{70} \mathrm{Cl}_{3} \mathrm{NO}_{10} \mathrm{SiNa}\left[M+\mathrm{Na}^{+}\right]$: 1048.3727, found: 1048.3727.
 methylbut-1-en-1-yl)oxazol-4-yl)-3,5-dimethyl-10-methylene-2-oxo-12-(((2,2,2-trichloroethoxy)carbonyl)oxy) oxacyclo-octadec-6-yn-8-yl acetate (32). In a flame-dried 1 L two-neck round-bottom flask, molecular sieve $4 \AA(8 \mathrm{~g})$ and $5 \AA(19 \mathrm{~g})$ were added to a solution of diyne $\mathbf{3 1}(1.62 \mathrm{~g}, 1.57 \mathrm{mmol})$ in toluene (830 mL). After stirring for 1 h , a solution of complex 38 ($640 \mathrm{mg}, 0.483 \mathrm{mmol}, 0.31$ equiv) ${ }^{14}$ was dissolved in an aliquot (20 mL) of the reaction mixture and added. The resulting suspension was stirred for 45 min at ambient temperature before it was filtered through a plug of Celite which was rinsed with tert-butyl methyl ether $(100 \mathrm{~mL})$. The combined filtrates were evaporated and the residue was purified by flash chromatography (hexanes/ethyl acetate, $15: 1$ to $4: 1$) to give cycloalkyne 32 as a colorless $\operatorname{syrup}(1.21 \mathrm{~g}, 79 \%) .[\alpha]_{D}^{20}=-1.5\left(\mathrm{c}=1.02, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.65-$ 7.59 (m, 4H), 7.46-7.30 (m, 7H), 6.18-6.12 (m, 1H), 6.08 (dd, $J=9.3,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.46$ (ddd, $J=9.0,4.3,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.15(\mathrm{qd}, J=6.4,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.96(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.94(\mathrm{~d}, J=1.1 \mathrm{~Hz}$, $1 \mathrm{H}), 4.84-4.66(\mathrm{~m}, 3 \mathrm{H}), 3.91-3.77(\mathrm{~m}, 1 \mathrm{H}), 3.19$ (s, 3H), 2.63-2.18 (m, 7H), 2.06 (s, 3H), 1.95 (ddd, $J=15.0,7.1,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.89(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 4 \mathrm{H}), 1.69-1.39(\mathrm{~m}, 5 \mathrm{H}), 1.38-1.30(\mathrm{~m}$, 2 H), 1.27 (d, $J=6.5 \mathrm{~Hz}, 3 \mathrm{H}$), 1.10 (d, $J=6.9 \mathrm{~Hz}, 3 \mathrm{H}$), 1.07 (d, $J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.04$ (s, 9H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=175.5,169.9,160.4,153.9,151.0,140.9,139.5,135.9$ (4C), 135.1, 134.11, 134.06, 129.8 (2C), 127.7 (4C), 116.9, 113.3, 94.7, 90.6, 78.2, 78.1, 76.6, 74.8, $70.2,65.6,63.4,56.6,41.9,40.9,40.7,38.11,38.09,35.9,34.1,27.1$ (3C), 24.1, 21.7, 21.3, 20.5, 19.4, 19.3, 17.8, 17.1; IR (film): $\tilde{v}=2932,2859,1743,1650,1428,1379,1250,1163$, 1111, 1021, 821, 739, 704, 613, 570, $508 \mathrm{~cm}^{-1}$; MS (ESI) $m / z(\%): 996\left(M+\mathrm{Na}^{+}, 100\right)$; HRMS (ESI): m / z : calcd. for $\mathrm{C}_{50} \mathrm{H}_{64} \mathrm{Cl}_{3} \mathrm{NO}_{10} \mathrm{SiNa}\left[M+\mathrm{Na}^{+}\right]$: 994.3257, found: 994.3257.

(3S,5S,8S,12R,16S,18S)-16-((tert-Butyldiphenylsilyl)oxy)-12-
hydroxy-18-(2-(($R, Z)$-3-methoxy-2-methylbut-1-en-1-yl)oxazol-4-yl)-3,5-dimethyl-10-methylene-2-oxooxacyclooctadec-6-yn-8-yl acetate (33). Zinc dust (1.55 g , 23.6 mmol , Sigma-Aldrich ${ }^{\circledR}$, $<10 \mu \mathrm{~m}$) was added to a solution of compound 32 ($230 \mathrm{mg}, 0.236 \mathrm{mmol}$) in neat acetic acid (12 mL). The suspension was sonicated for 15 min . (if TLC showed
unconsumed starting material, the same amount of zinc dust was added and sonication was continued until full conversion was reached). The suspension was filtered through a plug of Celite which was rinsed with ethyl acetate (20 mL). The combined filtrates were diluted with toluene (10 mL) and all volatile materials were evaporated. The residue was purified by flash chromatography (hexanes/ethyl acetate, $4: 1$ to $2: 1$) to give the title compound ($175 \mathrm{mg}, 93 \%$) as a pale yellow oil. $[\alpha]_{D}^{20}=-5.0\left(\mathrm{c}=1.03, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta=7.64$ (dd, $J=7.9,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.62(\mathrm{dd}, J=8.0,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.45-7.30(\mathrm{~m}, 7 \mathrm{H}), 6.15(\mathrm{dd}, J=1.5$, $0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.06(\mathrm{dd}, J=9.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.44(\mathrm{ddd}, J=8.3,4.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.15(\mathrm{qd}, J=$ $6.4,0.8 \mathrm{~Hz}, 1 \mathrm{H}$), 4.99 (br s, 1H), 4.97 (br s, 1H), 3.91-3.78 (m, 1H), 3.70-3.58 (m, 1H), 3.19 (s, 3H), $2.60(\mathrm{q}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.56-2.38(\mathrm{~m}, 4 \mathrm{H}), 2.32(\mathrm{ddd}, J=14.9,9.4,2.6 \mathrm{~Hz}, 1 \mathrm{H})$, 2.05 (s, 3H), 2.04-1.94 (m, 2H), 1.89 (d, $J=1.2 \mathrm{~Hz}, 3 \mathrm{H}$), 1.72-1.52 (m, 4H), 1.51-1.42 (m, $1 \mathrm{H}), 1.42-1.30(\mathrm{~m}, 4 \mathrm{H}), 1.27(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.09(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.06(\mathrm{~d}, J=7.1 \mathrm{~Hz}$, 3 H), 1.04 ($\mathrm{s}, 9 \mathrm{H}$) ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=175.5,169.8,160.4,150.9,141.4,140.9$, 135.9 (4C), 134.2, 134.14, 134.13, 129.78, 129.77, 127.7 (4C), 116.8, 113.4, 90.5, 78.3, 74.8, $70.4,68.8,65.7,63.7,56.6,45.0,41.0,40.6,38.4,38.0,36.9,35.9,27.1,24.0,21.9,21.3$, 20.4, 19.4, 19.3, 17.8, 17.0; IR (film): $\tilde{v}=3467,2932,2858,1737,1649,1449,1428,1373$, 1232, 1162, 1105, 1022, 969, 900, 856, 822, 757, 704, 612, 509, $489 \mathrm{~cm}^{-1} ;$ MS (ESI) $\mathrm{m} / \mathrm{z}(\%)$: $820\left(M+\mathrm{Na}^{+}, 100\right)$; HRMS (ESI): $m / z:$ calcd. for $\mathrm{C}_{47} \mathrm{H}_{63} \mathrm{NO}_{8} \mathrm{SiNa}\left[M+\mathrm{Na}^{+}\right]: 820.4215$, found: 820.4215 .

Compound 7-epi-33. Prepared analogously; it analyzed as follows: $[\alpha]_{D}^{20}=25.0$ ($\mathrm{c}=1.00$, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.67-7.58(\mathrm{~m}, 4 \mathrm{H}), 7.46-7.28(\mathrm{~m}, 7 \mathrm{H}), 6.16-6.09$ (m, 2H), 5.51 (ddd, $J=7.1,4.8,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{q}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.98(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.96$ (br s, 1H), 3.91-3.80 (m, 1H), 3.72-3.60 (m, 1H), 3.19 ($\mathrm{s}, 3 \mathrm{H}$), 2.64-2.55 (m, 1H), 2.53-2.41 (m, 4H), 2.32 (ddd, $J=14.8,9.6,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.12-2.03(\mathrm{~m}, 1 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H}), 1.94$ (ddd, $J=$ $15.0,6.9,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.88(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.84-1.71(\mathrm{~m}, 1 \mathrm{H}), 1.66-1.56(\mathrm{~m}, 2 \mathrm{H}), 1.55-$ 1.41 (m, 2H), 1.38-1.29 (m, 3H), 1.27 (d, $J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.25(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.10(\mathrm{~d}, J=7.0 \mathrm{~Hz}$, $3 \mathrm{H}), 1.06(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.04(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=175.4,170.0$, $160.3,150.8,141.1,141.0,135.9$ (4C), 134.2, 134.1 (2C), 129.8, 129.7, 127.6 (4C), 117.2, $113.4,90.5,78.2,74.8,70.7,68.8,65.5,63.1,56.6,45.1,41.4,40.5,38.2,38.1,36.9,36.2$, 27.1 (3C), 24.1, 22.4, 21.3, 20.4, 19.4, 19.3, 17.8, 17.2; IR (film): $\tilde{v}=3478,2931,2858$, $1739,1648,1451,1428,1373,1233,1164,1109,1026,970,902,858,822,741,704,613$, 509, $488 \mathrm{~cm}^{-1}$; MS (ESI) $m / z(\%): 820\left(M+\mathrm{Na}^{+}, 100\right)$; HRMS (ESI): $m / z:$ calcd. for $\mathrm{C}_{47} \mathrm{H}_{63} \mathrm{NO}_{8} \mathrm{SiNa}\left[M+\mathrm{Na}^{+}\right]: 820.4215$, found: 820.4215.

Complex 39. A solution of chloro(dimethylsulfide)gold(I) ($56.6 \mathrm{mg}, 192 \mu \mathrm{~mol}$) and (R) or
 (S)-3,5-tBu-4-MeO-Biphep ($111 \mathrm{mg}, 96.1 \mu \mathrm{~mol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (7 mL) was stirred for 24 h at ambient temperature. The solvent was removed by a stream of argon and the colorless solid was dried on the high vacuum to obtain the title complex (quant.). The analytical data were in full agreement with those reported in literature. ${ }^{15}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.59(\mathrm{td}, J=$ $8.1,2.5 \mathrm{~Hz}, 2 \mathrm{H}$), 7.39 (d, $J=13.7 \mathrm{~Hz}, 4 \mathrm{H}$), 7.11 (br d, $J=$ $14.0 \mathrm{~Hz}, 4 \mathrm{H}$), 7.02-6.86 (m, 4H), 3.72 ($\mathrm{s}, 6 \mathrm{H}$), 3.69 ($\mathrm{s}, 6 \mathrm{H}$), 2.72 (s, 6H), 1.33 (s, 72 H); ${ }^{31} \mathrm{P}$ NMR ($160 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ 21.9 (s).
(1R,4S,6S,9S,11S,15R,E)-11-((tert-Butyldiphenylsilyl)oxy)-9-(2-((R,Z)-3-methoxy-2-
 methylbut-1-en-1-yl)oxazol-4-yl)-4,6-dimethyl-17-methylene-7-oxo-8,19-dioxabicyclo[13.3.1]nonadec-2-en-3yl acetate (34). Silver hexafluoroantimonate (2.94 mg , $8.56 \mu \mathrm{~mol}, 0.34$ equiv) and the gold complex $(R)-39(6.89 \mathrm{mg}$, $4.26 \mu \mathrm{~mol}, 0.17$ equiv) were suspended in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.30 \mathrm{~mL})$ and the mixture was sonicated for 5 min . The suspension was filtered through a plug of Celite (rinsing with $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 2 \times$ 0.25 mL) into a solution of compound $33(20.0 \mathrm{mg}, 25.1$ $\mu \mathrm{mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$. After stirring for 48 h , the solvent was removed by a stream of argon and the residue was purified by flash chromatography (hexanes/ethyl acetate, 10:1) to give the title compound ($18.1 \mathrm{mg}, 91 \%$) as a colorless oil. According to NMR, only the E-isomer has formed, which analyzed as follows: $[\alpha]_{D}^{20}=-28.9$ $\left(\mathrm{c}=0.98, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.70(\mathrm{~m}, 2 \mathrm{H}), 7.64(\mathrm{~m}, 2 \mathrm{H}), 7.40(\mathrm{~m}$, $1 \mathrm{H}), 7.37(\mathrm{~m}, 1 \mathrm{H}), 7.34(\mathrm{~m}, 2 \mathrm{H}), 7.32(\mathrm{~m}, 2 \mathrm{H}), 7.15(\mathrm{~s}, 1 \mathrm{H}), 6.08(\mathrm{qd}, J=1.4,1.0 \mathrm{~Hz}, 1 \mathrm{H})$, $5.93(\mathrm{dd}, J=12.4,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{qd}, J=6.5,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.04(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.69$ ($\mathrm{t}, J=1.8 \mathrm{~Hz}, 2 \mathrm{H}$), 4.06 (ddd, $J=11.9,3.5,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{tdd}, J=10.2,4.4,1.8 \mathrm{~Hz}, 1 \mathrm{H})$, $3.39(\mathrm{tt}, J=11.3,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.14(\mathrm{~s}, 3 \mathrm{H}), 2.57(\mathrm{dqd}, J=8.9,7.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.53(\mathrm{dqd}, J=$ $9.2,6.9,6.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.33 (ddd, $J=13.9,12.4,4.4 \mathrm{~Hz}, 1 \mathrm{H}$), 2.27 (ddd, $J=13.4,2.5,1.4 \mathrm{~Hz}$, $1 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H}), 2.08(\mathrm{ddtd}, J=13.4,11.9,1.6,0.9,1 \mathrm{H}), 2.08(\mathrm{~m}, 1 \mathrm{H}), 1.94(\mathrm{ddtd}, J=13.3$,
$11.3,1.6,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.87(\mathrm{ddd}, J=13.9,10.1,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.84(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.83$ $(\mathrm{m}, 1 \mathrm{H}), 1.72(\mathrm{t}, J=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.67(\mathrm{~m}, 1 \mathrm{H}), 1.33(\mathrm{~m}, 2 \mathrm{H}), 1.25(\mathrm{~m}, 1 \mathrm{H}), 1.23(\mathrm{~d}, J=6.5$ $\mathrm{Hz}, 3 \mathrm{H}), 1.16$ (dd, $J=9.1,6.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.03(\mathrm{~s}, 9 \mathrm{H}), 0.91(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.69(\mathrm{~d}, J=6.8$ $\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=175.0,169.3,160.1,154.7,151.0,144.2,141.0$, 136.1 (2C), 135.9 (2C), 134.9, 133.8, 133.4, 129.7, 129.5, 127.7 (2C), 127.4 (2C), 119.9, $113.0,109.1,74.7,74.6,72.8,71.7,64.9,56.5,41.4,40.95,40.94,40.0,37.7,34.5,34.3,32.8$, 27.1 (3C), 22.0, 21.0, 20.0, 19.4, 19.0, 18.1, 17.6; IR (film): $\tilde{v}=2934,2858,1759,1733$, 1653, 1456, 1428, 1367, 1258, 1194, 1163, 1106, 1056, 1024, 899, 821, 743, 704, 610, 511, 491, $451 \mathrm{~cm}^{-1}$; MS (ESI) m / z (\%): $820\left(M+\mathrm{Na}^{+}, 100\right)$; HRMS (ESI): $m / z:$ calcd. for $\mathrm{C}_{47} \mathrm{H}_{63} \mathrm{NO}_{8} \mathrm{SiNa}\left[M+\mathrm{Na}^{+}\right]: 820.4215$, found: 820.4215.
(1S,3S,6S,8S,12R)-8-((tert-Butyldiphenylsilyl)oxy)-12-hydroxy-6-(2-((R,Z)-3-methoxy-2-
 methylbut-1-en-1-yl)oxazol-4-yl)-1,3-dimethyl-4-oxo-1,2,3,4,6,7,8,9,10,11,12,13-dodecahydro-14H-13a,16a-methanocyclopenta[f][1]oxacyclopentadecin-16-yl
acetate (40). The reaction was performed analogously, using (S)-39 as precatalyst. Flash chromatography (hexanes/ethyl acetate, 10:1) gave product $34(50-70 \%)$ as an inseparable mixture of the E and Z isomers ($\sim 4: 1$) and product 40 (20-30\%), which analyzed as follows: ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.59(\mathrm{~m}$, $2 \mathrm{H}), 7.57(\mathrm{~m}, 2 \mathrm{H}), 7.38(\mathrm{~m}, 1 \mathrm{H}), 7.36(\mathrm{~m}, 1 \mathrm{H}), 7.31(\mathrm{~m}, 2 \mathrm{H}), 7.28(\mathrm{~m}, 2 \mathrm{H}), 7.24(\mathrm{~s}, 1 \mathrm{H}), 6.09$ (qd, $J=1.4,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.07(\mathrm{dd}, J=9.2,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{t}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{qd}, J=$ $6.4,0.8 \mathrm{~Hz}, 1 \mathrm{H}$), 3.86 (dddd, $J=8.0,6.9,5.7,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{~m}, 1 \mathrm{H}), 3.12(\mathrm{~s}, 3 \mathrm{H}), 2.62$ (dd, $J=17.5,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.41$ (dd, $J=17.5,2.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.39 (dqi, $J=7.0,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.21$ (ddd, $J=15.1,9.2,2.4 \mathrm{~Hz}, 1 \mathrm{H}$), $2.10(\mathrm{~s}, 3 \mathrm{H}), 1.91(\mathrm{ddd}, J=15.1,8.0,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.85(\mathrm{~d}, J$ $=1.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.78(\mathrm{~m}, 1 \mathrm{H}), 1.72(\mathrm{~m}, 1 \mathrm{H}) 1.66(\mathrm{dd}, J=14.4,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.54(\mathrm{~m}, 1 \mathrm{H}), 1.52$ (ddd, $J=14.4,10.2,1.1,1 \mathrm{H}), 1.45(\mathrm{~m}, 2 \mathrm{H}), 1.42(\mathrm{~m}, 1 \mathrm{H}), 1.39(\mathrm{~m}, 1 \mathrm{H}), 1.35(\mathrm{~m}, 1 \mathrm{H}), 1.25$ (d, $J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.21(\mathrm{~m}, 1 \mathrm{H}), 1.05(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.04(\mathrm{~m}, 1 \mathrm{H}), 1.02(\mathrm{~s}, 9 \mathrm{H}), 0.93$ (d, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.60(\mathrm{dd}, J=4.0,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 0.41(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (150 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=176.0,168.3,160.1,153.7,150.6,140.4,135.8$ (2C), 135.7 (2C), 134.3, 134.2 (2C), 129.6 (2C), 127.49 (2C), 127.48 (2C), 113.2, 110.5, 74.7, 73.3, 70.7, 65.2, 56.4, $40.9,40.5,39.8,38.7,37.6,36.8,36.6,36.5,31.0,29.6,27.0$ (3C), 24.1, 21.3, 20.7, 20.4, 19.3, 19.2, 18.1, 17.6 .

methylbut-1-en-1-yl)oxazol-4-yl)-2,4-dimethyl-6-oxa-1(1,3)-benzenacyclotetradecaphan-5-one (41). Prepared analogously starting with 7 -epi-33, using (R)-39 as the precatalyst. The crude product was purified by preparative LC (Kromasil 100-5C18 $5 \mu \mathrm{~m}, 150 \mathrm{~mm} \times 21.2 \mathrm{~mm}$, $\mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O}, 95: 5,35{ }^{\circ} \mathrm{C}, 20 \mathrm{~mL} / \mathrm{min}$) to give 34 (10-20\%) as an inseparable mixture of the E and Z isomers ($\sim 4: 1$) and compound 41 ($\sim 50 \%$), which analyzed as follows: ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.61$ (m, $2 \mathrm{H}), 7.60(\mathrm{~m}, 2 \mathrm{H}), 7.42(\mathrm{~s}, 1 \mathrm{H}), 7.39(\mathrm{~m}, 1 \mathrm{H}), 7.38(\mathrm{~m}, 1 \mathrm{H}), 7.32(\mathrm{~m}, 4 \mathrm{H}), 7.25(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.16(\mathrm{t}, J=1.7,1 \mathrm{H}), 7.08$ (ddd, $J=7.5,1.3,1.3 \mathrm{~Hz}, 1 \mathrm{H}$), 7.06 (ddd, , $J=7.4,2.9 \mathrm{~Hz}$, $1 \mathrm{H}), 6.17(\mathrm{dd}, J=10.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.14(\mathrm{qd}, J=1.4,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.25(\mathrm{qd}, J=6.4,0.5 \mathrm{~Hz}$, $1 \mathrm{H}), 3.94$ (dddd, $J=10.3,6.5,4.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.19(\mathrm{~s}, 3 \mathrm{H}), 2.89(\mathrm{dd}, J=$ $13.9,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.81(\mathrm{dd}, J=13.9,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.61(\mathrm{dqd}, J=12.2,7.0,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.56$ (ddd, $J=15.2,10.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.10(\mathrm{dqd}, J=11.4,6.9,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.85(\mathrm{~d}, J=1.5 \mathrm{~Hz}$, 3 H), 1.80 (ddd, $J=15.2,6.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}$), 1.74 (ddd, $J=13.8,11.4,3.1 \mathrm{~Hz}, 1 \mathrm{H}$), 1.59 (m, $1 \mathrm{H}), 1.51(\mathrm{~m}, 1 \mathrm{H}), 1.44(\mathrm{~m}, 1 \mathrm{H}), 1.42(\mathrm{~m}, 1 \mathrm{H}), 1.34(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.24(\mathrm{~m}, 1 \mathrm{H}), 1.19(\mathrm{~d}, J=6.5$ $\mathrm{Hz}, 3 \mathrm{H}), 1.08(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.03(\mathrm{~s}, 9 \mathrm{H}), 1.01(\mathrm{~m}, 2 \mathrm{H}), 1.00(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=176.7,160.2,150.7,146.4,140.8,135.78$ (2C), 135.77 (2C), 135.4, 134.4, 134.2, 134.1, 132.3, 129.7, 129.6, 128.7, 128.0, 127.6 (2C), 127.5 (2C), 122.9, $113.2,74.7,71.1,70.7,65.3,56.5,45.6,39.9,37.4,37.1,36.8,36.0,35.6,27.0$ (3C), 22.5, 22.2, 19.3, 19.2, 18.3, 17.6.
(1R,4S,6S,9S,11S,15R)-11-((tert-Butyldiphenylsilyl)oxy)-9-(2-((R,Z)-3-methoxy-2-
 methylbut-1-en-1-yl)oxazol-4-yl)-4,6-dimethyl-17-methylene-8,19-dioxabicyclo[13.3.1]nonadecane-3,7-dione (35). Potassium carbonate ($32.7 \mathrm{mg}, 237 \mu \mathrm{~mol}$) was added to a solution of compound $\mathbf{3 4}(63.0 \mathrm{mg}, 78.9 \mu \mathrm{~mol})$ in methanol (10 mL). After stirring 3 h , the mixture was filtered through a plug of Celite which was rinsed with tert-butyl methyl ether (10 mL). The combined filtrates were concentrated and the residue was purified by flash chromatography (hexanes/ethyl acetate, 10:1) to give the title compound ($56.8 \mathrm{mg}, 95 \%$) as a colorless oil. $[\alpha]_{D}^{20}=-28.6\left(\mathrm{c}=1.14, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.70(\mathrm{dd}, J=7.9,1.4 \mathrm{~Hz}$,
$2 \mathrm{H}), 7.64(\mathrm{dd}, J=7.9,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.46-7.30(\mathrm{~m}, 6 \mathrm{H}), 7.21(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.12(\mathrm{qd}$, $J=1.4,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.95(\mathrm{dd}, J=11.4,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.14(\mathrm{qd}, J=6.4,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.75-4.68$ (m, 2H), 3.76-3.62 (m, 1H), $3.54(\mathrm{dd}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.39(\mathrm{dd}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.16(\mathrm{~s}$, $3 \mathrm{H}), 2.81(\mathrm{dd}, J=15.4,9.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.70-2.61(\mathrm{~m}, 1 \mathrm{H}), 2.41-2.25(\mathrm{~m}, 2 \mathrm{H}), 2.25-2.06(\mathrm{~m}$, $3 \mathrm{H}), 2.01-1.90(\mathrm{~m}, 3 \mathrm{H}), 1.87(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.80-1.71(\mathrm{~m}, 3 \mathrm{H}), 1.41-1.30(\mathrm{~m}, 5 \mathrm{H}), 1.26$ $(\mathrm{d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.05(\mathrm{~s}, 9 \mathrm{H}), 0.99(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.85(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=212.9,175.0,160.3,151.1,144.0,141.1,136.2$ (2C), 136.0 (2C), 134.7, 133.8, 133.7, 129.9, 129.7, 127.8 (2C), 127.6 (2C), 113.2, 109.4, 75.2, 74.8, 74.3, 71.4, 65.0, 56.6, 48.5, 42.9, 41.4, 40.8, 40.5, 39.0, 36.0, 35.0, 33.9, 27.2 (3C), 20.8, 19.6, 19.3, 18.8, 17.8, 17.7; IR (film): $\tilde{v}=2932,2857,1729,1703,1652,1456,1428,1380,1259,1163$, 1103, 1058, 892, 821, 804, 755, 702, 611, 509, $488 \mathrm{~cm}^{-1}$; MS (ESI) $\mathrm{m} / \mathrm{z}(\%): 778\left(M+\mathrm{Na}^{+}\right.$, 100); HRMS (ESI): $m / z:$ calcd. for $\mathrm{C}_{45} \mathrm{H}_{61} \mathrm{NO}_{7} \mathrm{SiNa}\left[M+\mathrm{Na}^{+}\right]: 778.4110$, found: 778.4110.
(1R,3S,4S,6S,9S,11S,15R)-11-((tert-Butyldiphenylsilyl)oxy)-3-hydroxy-9-(2-((R,Z)-3-
 methoxy-2-methylbut-1-en-1-yl)oxazol-4-yl)-4,6-dimethyl-17-methylene-8,19-dioxabicyclo[13.3.1]nonadecan-7-one (36). Sodium borohydride ($12.5 \mathrm{mg}, 331 \mu \mathrm{~mol}$) was added at $-40{ }^{\circ} \mathrm{C}$ to a solution of ketone 35 (50.0 mg , $66.1 \mu \mathrm{~mol}$) in MeOH (5 mL). After stirring for 3 h at this temperature, excess reagent was quenched with aq. phosphate buffer ($\mathrm{pH} 7,10 \mathrm{~mL}$) and the solution was allowed to reach ambient temperature. The aqueous phase was extracted with tert-butyl methyl ether ($3 \times 10 \mathrm{~mL}$) and the combined extracts were dried over MgSO_{4}, filtered and concentrated. The crude product was purified by flash chromatography (hexanes/ethyl acetate, $8: 1$ to $2: 1$) to yield $\mathbf{3 6}(30.8 \mathrm{mg}, 61 \%)$ and 5 -epi- $\mathbf{3 6}(16.4 \mathrm{mg}, 33 \%)$, each as a colorless oil.
Analytical data of compound 36: $[\alpha]_{D}^{20}=-31.4\left(\mathrm{c}=1.50, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, CDCl_{3}): $\delta=7.72(\mathrm{dd}, J=7.9,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.67(\mathrm{dd}, J=7.9,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.45-7.32(\mathrm{~m}, 6 \mathrm{H})$, $7.28(\mathrm{~d}, J=0.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.14-6.11(\mathrm{~m}, 1 \mathrm{H}), 5.72(\mathrm{dd}, J=11.9,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{qd}, J=6.5$, $0.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.70-4.64(\mathrm{~m}, 2 \mathrm{H}), 3.85-3.66(\mathrm{~m}, 2 \mathrm{H}), 3.35-3.19(\mathrm{~m}, 2 \mathrm{H}), 3.17(\mathrm{~s}, 3 \mathrm{H}), 2.52$ (dqd, $J=10.3,7.0,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{ddd}, J=14.0,12.1,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.13(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.09$ (br s, 1H), 2.01-1.88 (m, 4H), 1.87 (d, $J=1.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.77-1.50(\mathrm{~m}, 7 \mathrm{H}), 1.48-1.30(\mathrm{~m}, 4 \mathrm{H})$, $1.26(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.05(\mathrm{~s}, 9 \mathrm{H}), 0.94(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.71(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta=175.8,160.2,151.1,145.0,140.8,136.2$ (2C), 136.0 (2C),
134.7, 134.3, 134.0, 129.8, 129.6, 127.8 (2C), 127.6 (2C), 113.3, 108.5, 77.2, 76.0, 75.2, 74.9, $71.2,68.7,65.9,56.6,41.9,41.7,41.4,41.0,37.9,36.3,35.6,33.8,33.6,27.3$ (3C), 21.4, 19.6, 19.2, 17.7, 16.5, 13.5; IR (film): $\tilde{v}=3468,2933,2857,1726,1652,1549,1454,1428$, $1380,1248,1204,1150,1103,1044,1005,976,955,891,822,756,703,611,510,488 \mathrm{~cm}^{-1}$; MS (ESI) m / z (\%): $780\left(M+\mathrm{Na}^{+}, 100\right)$; HRMS (ESI): m/z: calcd. for $\mathrm{C}_{45} \mathrm{H}_{63} \mathrm{NO}_{7} \mathrm{SiNa}$ [$\left.M+\mathrm{Na}^{+}\right]$: 780.4266, found: 780.4266.
Analytical data of compound 5-epi-36: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.71$ (dd, $J=7.9,1.5$ $\mathrm{Hz}, 2 \mathrm{H}$), 7.66 (dd, $J=7.9,1.5 \mathrm{~Hz}, 2 \mathrm{H}$), 7.46-7.33 (m, 6H), 7.25 (d, $J=0.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.14-6.11$ $(\mathrm{m}, 1 \mathrm{H}), 5.84(\mathrm{dd}, J=11.3,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{qd}, J=6.4,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.69(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 3.8-$ $3.75(\mathrm{~m}, 1 \mathrm{H}), 3.57-3.24(\mathrm{~m}, 4 \mathrm{H}), 3.17(\mathrm{~s}, 3 \mathrm{H}), 2.92-2.81(\mathrm{~m}, 1 \mathrm{H}), 2.32(\mathrm{ddd}, J=14.5,11.4$, $3.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.13(\mathrm{br} \mathrm{d}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.10(\mathrm{br} \mathrm{d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.04-1.88(\mathrm{~m}, 3 \mathrm{H})$, $1.86(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.79-1.29(\mathrm{~m}, 11 \mathrm{H}), 1.25(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.03(\mathrm{~s}, 9 \mathrm{H}), 0.92(\mathrm{~d}, J$ $=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.77(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=176.9,160.3$, 151.1, 144.9, 141.0, 136.1 (2C), 136.0 (2C), 134.7, 134.0 (2C), 129.8, 129.6, 127.8 (2C), 127.6 (2C), 113.3, 108.6, 76.0, 75.5, 75.2, 74.9, 71.3, 65.8, 56.6, 41.9, 41.5, 40.9, 40.4, 40.2, 39.2, 35.7, 35.0, 33.9, 27.2 (2C), 21.4, 19.6, 19.2, 18.0, 17.8, 17.2.

Bis-((9H-fluoren-9-yl)methyl) ((1R,3S,4S,6S,9S,11S,15R)-11-((tert-butyldiphenylsilyl)-oxy)-9-(2-((R,Z)-3-methoxy-2-methylbut-1-en-1-yl)oxazol
-4-yl)-4,6-dimethyl-17-methylene-7-oxo-8,19-dioxa bicyclo[13.3.1]nonadecan-3-yl) phosphate (37). A solution of
 a tetrazole $(0.45 \mathrm{M}$ in $\mathrm{MeCN}, 264 \mu \mathrm{~L}, 119 \mu \mathrm{~mol})$ was added at $0{ }^{\circ} \mathrm{C}$ to a solution of alcohol $36(30.0 \mathrm{mg}, 39.6$ $\mu \mathrm{mol})$ and $i \mathrm{Pr}_{2} \mathrm{NP}(\mathrm{OFm})_{2}(62.9 \mathrm{mg}, 119 \mu \mathrm{~mol})^{22}$ in $\mathrm{MeCN}(0.75 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.75 \mathrm{~mL})$. The mixture was stirred for 3 h at ambient temperature before it was cooled to $0^{\circ} \mathrm{C}$ and aq. hydrogen peroxide ($35 \% w / w, 115$ $\mu \mathrm{L}, 1.19 \mathrm{mmol}$) was added. After stirring for additional 30 min , the reaction was quenched with aq. sat. NaHCO_{3} (5 mL). The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 $\times 5 \mathrm{~mL}$) and the combined extracts were washed with brine, dried over MgSO_{4}, filtered and concentrated. The residue was purified by flash chromatography (hexanes/ethyl acetate, 6:1 to 2:1) to afford the title compound (47.1 mg , quant.) as a colorless solid. $[\alpha]_{D}^{20}=-11.1$ ($\mathrm{c}=$ $2.35, \mathrm{CHCl}_{3}$); ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.74(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.71(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{~m}, 3 \mathrm{H}), 7.63(\mathrm{~m}, 2 \mathrm{H}), 7.52(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.50(\mathrm{~d}, J$
$=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.39-7.33(\mathrm{~m}, 10 \mathrm{H}), 7.27(\mathrm{td}, J=7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.26(\mathrm{td}, J=7.4,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{td}, J=7.4,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{td}, J=7.5,1.1 \mathrm{~Hz}, 1 \mathrm{H})$, $7.15(\mathrm{~s}, 1 \mathrm{H}), 6.08(\mathrm{~s}, 1 \mathrm{H}), 5.79(\mathrm{dd}, J=12.5,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{q}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.68(\mathrm{~m}$, $2 \mathrm{H}), 4.51$ (dddd, $J=11.6,6.8,4.8,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.23-4.14(\mathrm{~m}, 4 \mathrm{H}), 4.10(\mathrm{~m}, 2 \mathrm{H}), 3.59(\mathrm{~m}$, $1 \mathrm{H}), 3.23(\mathrm{tt}, J=11.1,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.14(\mathrm{~s}, 3 \mathrm{H}), 2.98(\mathrm{ddd}, J=11.4,9.1,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.55$ (dqd, $J=12.7,6.7,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.26(\mathrm{ddd}, J=13.7,12.5,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.07(\mathrm{~d}, J=13.3 \mathrm{~Hz}$, $1 \mathrm{H}), 1.97(\mathrm{~d}, J=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.84(\mathrm{~m}, 1 \mathrm{H}), 1.84(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.84(\mathrm{~m}, 1 \mathrm{H}), 1.83(\mathrm{~m}$, $1 \mathrm{H}), 1.82(\mathrm{~m}, 1 \mathrm{H}), 1.80(\mathrm{~m}, 1 \mathrm{H}), 1.64(\mathrm{dd}, J=14.0,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.63(\mathrm{ddd}, J=12.4,9.6,1.6$ $\mathrm{Hz}, 1 \mathrm{H}), 1.58(\mathrm{~m}, 1 \mathrm{H}), 1.40(\mathrm{~m}, 1 \mathrm{H}), 1.30(\mathrm{~m}, 2 \mathrm{H}), 1.23(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.21(\mathrm{~m}, 1 \mathrm{H})$, $1.20(\mathrm{~m}, 1 \mathrm{H}), 1.02(\mathrm{~s}, 9 \mathrm{H}), 0.83(\mathrm{td}, J=13.3,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 0.78(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.60(\mathrm{~d}, J$ $=6.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=174.0,160.1,151.0,144.5,143.15,143.13$, $143.12,143.05,141.34$ (3C), 141.31, 141.2, 136.1 (2C), 135.9 (2C), 134.8, 133.6, 133.3, $129.7,129.5,127.90,127.87$ (2C), 127.84, 127.7 (2C), 127.4 (2C), 127.14, 127.12, 127.11, $127.07,125.2,125.03,125.00(2 \mathrm{C}), 120.09,120.03,120.02,120.00,113.0,108.6,78.5$ (d, J_{C} $\mathrm{P}=7.0 \mathrm{~Hz}), 74.72,74.69,74.3,71.3,69.2\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=5.9 \mathrm{~Hz}\right), 68.9\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=6.1 \mathrm{~Hz}\right), 64.9$, $56.5,48.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=5.4 \mathrm{~Hz}\right), 47.9\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=5.8 \mathrm{~Hz}\right), 41.7,41.5,41.2,38.6,37.9,37.5,35.1$, $33.3,33.2\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=6.6 \mathrm{~Hz}\right), 27.1(3 \mathrm{C}), 21.1,19.5,19.0,17.6,17.4,13.7 ;{ }^{31} \mathrm{P}$ NMR ($160 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.00$ (s); IR (film): $\tilde{v}=3069,2934,2892,2857,1727,1450,1428$, $1381,1261,1205,1150,1105,1045,1003,988,914,823,757,740,704,612,511,494 \mathrm{~cm}^{-1}$; MS (ESI) $m / z(\%): 1217\left(M+\mathrm{Na}^{+}, 100\right)$; HRMS (ESI): $m / z:$ calcd. for $\mathrm{C}_{73} \mathrm{H}_{84} \mathrm{NO}_{10} \mathrm{PSiNa}$ $\left[M+\mathrm{Na}^{+}\right]: 1216.5494$, found: 1216.5494 .

Enigmazole A (1). A solution of tetrabutylammonium fluoride (1 M in THF, $188 \mu \mathrm{~L}, 188$
 $\mu \mathrm{mol})$ was added to a solution of compound $37(4.50 \mathrm{mg}$, $3.77 \mu \mathrm{~mol})$ in THF $(0.5 \mathrm{~mL})$ and acetic acid ($16.2 \mu \mathrm{~L}, 283$ $\mu \mathrm{mol}$,) and the resulting mixture was stirred at $40^{\circ} \mathrm{C}$ for 9 d. After reaching ambient temperature, the solution was diluted with water (1 mL) and loaded onto a C18-cartridge (Strata ${ }^{\circledR}$ C18-U, $55 \mu \mathrm{~m}, 70 \AA, 500 \mathrm{mg} / 6 \mathrm{~mL}$). The salts were eluted with water, followed by elution of the organic fraction with MeOH . The combined organic fractions was concentrated and the residue purified by preparative LC (Kromasil 100-5C18 $5 \mu \mathrm{~m}, 150 \mathrm{~mm} \times 21.2 \mathrm{~mm}, \mathrm{MeOH} / \mathrm{aq}$.
TEAA $\mathrm{pH} 8.0,70: 30$ to $100 \% \mathrm{MeOH}$ over $10 \mathrm{~min}, 35{ }^{\circ} \mathrm{C}, 20 \mathrm{~mL} / \mathrm{min}$) to obtain the
tetrabutylammonium salt of enigmazole A $(2.60 \mathrm{mg}, 82 \%)$ as a colorless powder after lyophilisation.

Purification by preparative LC (amount < 0.5 mg , Kromasil 100-5C18 $5 \mu \mathrm{~m}, 150 \mathrm{~mm} \times 21.2$ $\mathrm{mm}, \mathrm{MeCN} / \mathrm{aq}$. TEAA $\mathrm{pH} 8.0,30: 70$ to $50: 50$ over $6 \mathrm{~min}, 35^{\circ} \mathrm{C}, 20 \mathrm{~mL} / \mathrm{min}$) afforded the triethylammonium salt of Enigmazole A (quant.) after lyophilisation.
The protonated form of Enigmazole A was obtained by ion exchange chromatography (Adsorbex ${ }^{\circledR}$ SCX 400 mg) using MeOH as eluent.
Analytical data of the triethylammonium salt: for the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data, see Tables S1 and S2; $[\alpha]_{D}^{20}=-9.7\left(\mathrm{c}=0.50, \mathrm{CHCl}_{3}\right) ;{ }^{31} \mathrm{P}$ NMR ($160 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.00$ (s); IR (film): $\tilde{v}=3402$ (br), 2977, 2935, 2854, 1726, 1651, 1455, 1252, 1203, 1150, 1109, 1076, 1017, 972, 936, 896, 657, 594, 515, $497 \mathrm{~cm}^{-1}$; MS (ESI) $m / z(\%): 598\left(M-\mathrm{H}^{-}, 100\right)$; HRMS (ESI): $\mathrm{m} / \mathrm{z}:$ calcd. for $\mathrm{C}_{29} \mathrm{H}_{45} \mathrm{NO}_{10} \mathrm{P}\left[M^{-} \mathrm{H}^{-}\right]: 598.2787$, found: 598.2787;
Analytical data of the free acid: for the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data, see Tables S1 and S2; ${ }^{31} \mathrm{P}$ NMR ($160 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.00$ (s).

Table S1: Comparison of ${ }^{1} \mathrm{H}$ NMR data $\left(\mathrm{CD}_{3} \mathrm{OD}\right)$ of Enigmazole A;

numbering scheme as shown in the Insert

Position	Natural product, ${ }^{16}$ free acid	$\begin{aligned} & \text { Molinski Group, }{ }^{17} \\ & \text { Na-salt } \end{aligned}$	this work, $\mathrm{Et}_{3} \mathrm{NH}$-salt	this work, free acid
9	7.68, s	7.69, s	7.68, d, 0.5	7.68, d, 0.4
21	6.21 , s	6.22, br s	$6.21, \mathrm{qd}, 1.4,1.0$	6.20, qd, 1.4, 1.0
17	5.95, dd, 12.8, 2.5	5.96, dd, 12.5, 2.5	5.95, ddd, 12.8, 2.8, 0.5	5.95, ddd, 12.8, 2.9, 0.4
23	5.24, q, 6.5	5.25, q, 6.3	5.24, qd, 6.5, 0.9	5.23, qd, 6.5, 0.9
28a	4.70, d, 1.5	4.71, br s	4.70, q, 2.0	4.70, q, 1.9
28b	4.69, d, 1.5	4.70, br s	4.69, q, 2.0	4.69, q, 1.9
5	4.42, m	4.43, m	4.42, dddd, 11.2, 8.8, 4.4, 1.0	4.47, m
15	$3.62, \mathrm{dt}, 11.1,4.3$	3.63, m	3.60, tdd, 10.8, 4.1, 1.8	3.60, tdd, 10.8, 4.1, 1.8
11	3.29	3.30	3.30, tt, 11.0, 2.4	3.29, tt, 11.1, 2.4
23-OMe	3.20, s	3.21, s	3.20, s	3.19, s
$\mathrm{Et}_{3} \mathrm{NH}$	-	-	3.17, q, 7.3	-
7	3.12, dd, 10.3, 9.8	3.13, m	3.12, ddd, 11.4, 8.6, 2.3	3.12, ddd, 11.4, 8.6, 2.0
2	2.98	2.99, m	2.98, dqd, 12.5, 6.7, 3.8	2.95, m
16a	2.50, dt, 13.2, 3.4	2.51, dt, 13.3, 3.8	2.50, ddd, 13.8, 12.8, 4.1	2.50, ddd, 13.8, 12.8, 4.1
8 a	2.21, d, 12.8	2.23, d, 13.0	2.21, ddd, 13.0, 2.3, 1.2	2.20, br d, 13.2
10a	2.13, d, 12.8	2.14, d, 14.0	2.13, ddd, 13.1, 2.4, 1.2	2.13, br d, 13.2
6a	2.10, m	2.11, m	2.09, dd, 14.4, 4.4	2.07, br d, 14.4
8b	1.97, dd, 12.8, 12.3	1.98, t, 12.3	1.97, ddtd, 13.0, 11.4, 1.7, 1.0	1.97, m
25	1.89, s	1.89, d, 1.5	1.88, d, 1.6	1.88, d, 1.5
3 a	1.88, m	1.89, m	1.88, m	1.87, m
6b	1.87, m	1.88, m	1.87, m	1.90, m
10b	1.84	1.86	1.85, m	1.84, m
14a	1.76	1.79	1.78, m	1.78, tt, 12.9, 1.9
16b	1.77	1.78	1.77, ddd, 13.8, 10.8, 2.9	1.77, ddd, 13.8, 10.8, 2.9
13a	1.72	1.73	1.72, m	$1.72, \mathrm{tq}, 13.0,3.8$
12a	1.64	1.66	1.65, m	1.64, dddd, 14.0, 11.2, 3.8, 2.8
4	1.62	1.63	1.64, m	1.64, m
13b	1.54, q, 12.4	1.55, q, 12.5	1.53, tdt, 13.0, 12.6, 2.9	1.52, tdt, 13.0, 12.7, 2.8
3 b	1.38, t, 10.8	1.39, m	1.40, m	1.41, td, 13.2, 2.5
12b	1.37, t, 11.3	1.38, m	1.38, m	1.37, dddd, 14.0, 13.2, 3.3, 2.4
$\mathrm{Et}_{3} \mathrm{NH}$	-	-	1.30, t, 7.3	-
24	1.26, d, 6.4	1.27, d, 6.5	1.26, d, 6.5	1.26, d, 6.5
26	1.10, d, 6.4	1.11, d, 6.5	1.10, d, 6.7	1.10, d, 6.6
14b	1.02, td, 12.0, 3.4	1.04, dt, 12.0, 3.2	1.02, m	1.02, tdd, 12.8, 11.2, 4.1
27	0.97, d, 6.4	0.98, d, 6.5	0.97, d, 6.6	0.97, d, 6.5

Table S2: Comparison of ${ }^{13} \mathrm{C}$ NMR data $\left(\mathrm{CD}_{3} \mathrm{OD}\right)$ of Enigmazole A;
numbering scheme as shown in the Insert

Position	$\begin{aligned} & \text { Natural product, }{ }^{16} \\ & \text { free acid } \end{aligned}$	$\begin{aligned} & \hline \text { Molinski Group, }{ }^{17} \\ & \text { Na-salt } \end{aligned}$	this work, $\mathrm{Et}_{3} \mathrm{NH}$-salt	this work, protonated
1	176.4	176.5	176.5	176.5
20	161.7	161.9	161.9	161.9
22	152.7	152.7	152.7	152.7
9	146.3	146.6	146.6	146.5
18	142.3	142.4	142.4	142.3
19	136.0	135.9	135.9	135.9
21	113.9	114.0	114.0	114.0
28	108.8	108.6	108.7	108.7
7	77.2	77.6	77.5	77.4
23	77.0	76.2	76.2	76.2
11	76.2	75.7	75.8	75.9
5	75.8	75.2, d, 6.1	75.4,d , 6.3	75.8, br
15	69.8	69.8	69.8	69.8
17	65.9	65.6	65.7	65.8
23-OMe	56.8	56.8	56.8	56.8
$\mathrm{Et}_{3} \mathrm{NH}$	-	-	47.6	-
8	43.0	43.0	43.1	43.1
16	42.6	42.7	42.7	42.6
10	42.4	42.5	42.5	42.5
6	40.1	40.1	40.2	40.1
2	39.6	39.7	39.7	39.7
3	39.3	39.3	39.4	39.3
4	36.2	34.7, d, 6.1	34.7, d, 6.4	34.7 d, 4.6
12	36.2	36.2	36.2	36.2
14	33.6	33.6	33.6	33.6
13	21.8	21.8	21.8	21.8
24	19.4	19.4	19.4	19.4
26	18.2	18.3	18.3	18.3
25	17.6	17.7	17.7	17.7
27	14.7	15.0	15.0	14.9
$\mathrm{Et}_{3} \mathrm{NH}$	-	-	9.2	-

References

${ }^{1}$ Z. Lu, S. Ma, J. Org. Chem. 2006, 71, 2655-2660.
F. Iwasaki, T. Maki, O. Onomura, W. Nakashima, Y. Matsumura, J. Org. Chem. 2000, 65, 996-1002.
A. S. Khartulyari, M. Kapur, M. E. Maier, Org. Lett. 2006, 8, 5833-5836.
A. Krasovskiy, P. Knochel, Synthesis 2006, 890-891.
J. Einhorn, C. Einhorn, F. Ratajczak, J.-L. Pierre, J. Org. Chem. 1996, 61, 7452-7454. H. J. Bestmann, K. H. Koschatzky, W. Schätzke, J. Süß, O. Vostrowsky, Liebigs Ann. Chem. 1981, 1705-1720.
G. E. Keck, T. Yu, M. D. McLaws, J. Org. Chem. 2005, 70, 2543-2550.
B. Martín-Matute, E. Buñuel, M. Méndez, C. Nieto-Oberhuber, D. J. Cárdenas, A. M. Echavarren, J. Organomet. Chem. 2003, 687, 410-419.
a) J. D. Mortison, J. D. Kittendorf, D. H. Sherman, J. Am. Chem. Soc. 2009, 131, 15784-15793; b) S. Hanessian, T. Focken, R. Oza, Org. Lett. 2010, 12, 3172-3175; c) G. K. Friestad, J.-C. Marié, A. M. Deveau, Org. Lett. 2004, 6, 3249-3252.
J. T. Lowe, J. S. Panek, Org. Lett. 2008, 10, 3813-3816.
J. A. Marshall, B. G. Shearer, S. L. Crooks, J. Org. Chem. 1987, 52, 1236-1245.
E. J. Corey, R. Imwinkelried, S. Pikul, Y. B. Xiang, J. Am. Chem. Soc. 1989, 111, 5493-5495.
J. Inanaga, K. Hirata, H. Saeki, T. Katsuki, M. Yamaguchi, Bull. Chem. Soc. Jpn. 1979, 52, 1989-1993.
J. Heppekausen, R. Stade, A. Kondoh, G. Seidel, R. Goddard, A. Fürstner, Chem. Eur. J. 2012, 18, 10281-10299.
A. S. K. Hashmi, M. Hamzić, F. Rominger, J. W. Bats, Chem. Eur. J. 2009, 15, 13318-13322.
N. Oku, K. Takada, R. W. Fuller, J. A. Wilson, M. L. Peach, L. K. Pannell, J. B. McMahon, K. R. Gustafson, J. Am. Chem. Soc. 2010, 132, 10278-10285.
C. K. Skepper, T. Quach, T. F. Molinski, J. Am. Chem. Soc. 2010, 132, 10286-10292.

1	1	1		1	1			1	1		1	1	1	1	1			1	1		
210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

210	200	190	180	170	160	150	140	130	120	110	00	90	80	70	60	50	40	30	20	10	0

| .0 | 8.5 | 8.0 | 7.5 | 7.0 | 6.5 | 6.0 | 5.5 | 5.0 | 4.5 | 4.0 | 3.5 | 3.0 | 2.5 | 2.0 | 1.5 | 1.0 | 0.5 | 0.0 | -1 |
| :--- |

	1	T	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
. 0	8.5	8.0	7.5	7.0	6.5	6.0	5.5	5.0	4.5	4.0	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0.0	-c

| .0 | 8.5 | 8.0 | 7.5 | 7.0 | 6.5 | 6.0 | 5.5 | 5.0 | 4.5 | 4.0 | 3.5 | 3.0 | 2.5 | 2.0 | 1.5 | 1.0 | 0.5 | 0.0 | $-c$ |
| :--- |

| 0 | 8.5 | 8.0 | 7.5 | 7.0 | 6.5 | 6.0 | 5.5 | 5.0 | 4.5 | 4.0 | 3.5 | 3.0 | 2.5 | 2.0 | 1.5 | 1.0 | 0.5 | 0.0 | -1 |
| :--- |

.0	8.5	8.0	7.5	7.0	6.5	6.0	5.5	5.0	4.5	4.0	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0.0	$-c$

| 1.0 | 10.5 | 10.0 | 9.5 | 9.0 | 8.5 | 8.0 | 7.5 | 7.0 | 6.5 | 6.0 | 5.5 | 5.0 | 4.5 | 4.0 | 3.5 | 3.0 | 2.5 | 2.0 | 1.5 | 1.0 | 0.5 | 0.0 | -1 |
| :--- |

	1	1	1	1	1	1	1		1	1	1	1	1	1	1	1		1	1	1			
20	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	

	1	T	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
. 0	8.5	8.0	7.5	7.0	6.5	6.0	5.5	5.0	4.5	4.0	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0.0	-c

| .0 | 8.5 | 8.0 | 7.5 | 7.0 | 6.5 | 6.0 | 5.5 | 5.0 | 4.5 | 4.0 | 3.5 | 3.0 | 2.5 | 2.0 | 1.5 | 1.0 | 0.5 | 0.0 | -1 |
| :--- |

	,	,	1	,	,	,	,	,	,	,	1	1	,		1	1			
. 0	8.5	8.0	7.5	7.0	6.5	6.0	5.5	5.0	4.5	4.0	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0.0	-

| .0 | 8.5 | 8.0 | 7.5 | 7.0 | 6.5 | 6.0 | 5.5 | 5.0 | 4.5 | 4.0 | 3.5 | 3.0 | 2.5 | 2.0 | 1.5 | 1.0 | 0.5 | 0.0 | -1 |
| :--- |

| .0 | 8.5 | 8.0 | 7.5 | 7.0 | 6.5 | 6.0 | 5.5 | 5.0 | 4.5 | 4.0 | 3.5 | 3.0 | 2.5 | 2.0 | 1.5 | 1.0 | 0.5 | 0.0 | -1 |
| :--- |

Wmumanw

	1	1	1	1	1	1	1		1	1	1	1	1	1	1	1		1	1	1			
20	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	

	1		1		1		1			1		1	T			1.		1	
. 0	8.5	8.0	7.5	7.0	6.5	6.0	5.5	5.0	4.5	4.0	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0.0	-C

OTBS

| .0 | 8.5 | 8.0 | 7.5 | 7.0 | 6.5 | 6.0 | 5.5 | 5.0 | 4.5 | 4.0 | 3.5 | 3.0 | 2.5 | 2.0 | 1.5 | 1.0 | 0.5 | 0.0 | -1 |
| :--- |

	1	T	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
. 0	8.5	8.0	7.5	7.0	6.5	6.0	5.5	5.0	$\begin{gathered} 4.5 \\ f 1 \end{gathered}$	4.0	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0.0	-c

Cles)

	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
20	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40			10	0

			7.5		,	1	1			+10	35	1.	1,	1		1	1	1	
. 0	8.5	8.0	7.5	7.0	6.5	6.0	5.5	5.0	4.5	4.0	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0.0	-C

			7.5		,	1	1			+10	35	1.	1,	1		1	1	1	
. 0	8.5	8.0	7.5	7.0	6.5	6.0	5.5	5.0	4.5	4.0	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0.0	-C

			7.5		,	1	1			+10	35	1.	1,	1		1	1	1	
. 0	8.5	8.0	7.5	7.0	6.5	6.0	5.5	5.0	4.5	4.0	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0.0	-C

	1	1	1	1	1	,	1	1	T	1	1	1	1	1	1	,	T	1	
. 0	8.5	8.0	7.5	7.0	6.5	6.0	5.5	5.0	4.5		3.5	3.0	2.5	2.0	1.5	1.0	0.5	0.0	-C

	,		,	1	,	,	,	1		,	1	,	1	,	1	,	T		
. 0	8.5	8.0	7.5	7.0	6.5	6.0	5.5	5.0	4.5	4.0	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0.0	-

			1	1			1	1			1.	1			1.5	1.		1	
. 0	8.5	8.0	7.5	7.0	6.5	6.0	5.5	5.0	$\stackrel{4.5}{f 1}$		3.5	3.0	2.5	2.0	1.5	1.0	0.5	0.0	-

	1		1	1	1	,	1	1	T	1	1	1	1	1	1	1	1	1
. 0	8.5	8.0	7.5	7.0	6.5	6.0	5.5	5.0	4.5		3.5	3.0	2.5	2.0	1.5	1.0	0.5	0.0

| .0 | 8.5 | 8.0 | 7.5 | 7.0 | 6.5 | 6.0 | 5.5 | 5.0 | 4.5 | 4.0 | 3.5 | 3.0 | 2.5 | 2.0 | 1.5 | 1.0 | 0.5 | 0.0 | -1 |
| :--- |

	,		,	1	,	,	,	1		,	1	,	1	,	1	,	T		
. 0	8.5	8.0	7.5	7.0	6.5	6.0	5.5	5.0	4.5	4.0	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0.0	-

			7.5		,	1	1			+10	35	1.	1,	1		1	1	1	
. 0	8.5	8.0	7.5	7.0	6.5	6.0	5.5	5.0	4.5	4.0	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0.0	-C

a Whe cinderal da

	1		1	1	1		1	1		1	1	1	1	1	1	1	1	1	
. 0	8.5	8.0	7.5	7.0	6.5	6.0	5.5	5.0	4.5	4.0	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0.0	-

	1		1		1		1			1	T		1		1				
. 0	8.5	8.0	7.5	7.0	6.5	6.0	5.5	5.0	4.5	4.0	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0.0	

